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Background: Machine learning (ML) allows for the development of a predictive algorithm capable of imbibing historical data on a
Major League Baseball (MLB) player to accurately project the player’s future availability.

Purpose: To determine the validity of an ML model in predicting the next-season injury risk and anatomic injury location for both
position players and pitchers in the MLB.

Study Design: Descriptive epidemiology study.

Methods: Using 4 online baseball databases, we compiled MLB player data, including age, performance metrics, and injury
history. A total of 84 ML algorithms were developed. The output of each algorithm reported whether the player would sustain an
injury the following season as well as the injury’s anatomic site. The area under the receiver operating characteristic curve (AUC)
primarily determined validation.

Results: Player data were generated from 1931 position players and 1245 pitchers, with a mean follow-up of 4.40 years (13,982
player-years) between the years of 2000 and 2017. Injured players spent a total of 108,656 days on the disabled list, with a mean of
34.21 total days per player. The mean AUC for predicting next-season injuries was 0.76 among position players and 0.65 among
pitchers using the top 3 ensemble classification. Back injuries had the highest AUC among both position players and pitchers, at
0.73. Advanced ML models outperformed logistic regression in 13 of 14 cases.

Conclusion: Advanced ML models generally outperformed logistic regression and demonstrated fair capability in predicting
publicly reportable next-season injuries, including the anatomic region for position players, although not for pitchers.
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Baseball is one of the richest data-driven sports, in which a
seemingly countless number of metrics exist to quantify
player performance. Major League Baseball (MLB) repre-
sents a “national pastime” focused on analytics that drive
not only the fan base and franchise’s personnel decisions
but also the orthopaedic and sports medicine litera-
ture.14,22,27,28 With the increased attention to baseball inju-
ries, outcomes, and performance, MLB, its players’ union,
and minor league affiliates reached an agreement to create

the MLB Health and Injury Tracking System (HITS) in
2010. While the goal of this system is to better understand
player safety, access to the raw data is safeguarded, the
database lacks prior injury data and is provided without
the context of performance metrics.1

From the perspective of MLB franchises and athletes,
Conte et al11 reported that the total annual cost of injuries
from disabled list (DL) placement for franchises averaged
more than US$423 million. In an industry where a single
injury carries health, performance, and financial conse-
quences for athletes, and in a sport laden with “big data,”
the advent of machine learning (ML) arrives at an auspi-
cious time to manage the growing performance and injury
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databases to answer complex questions. ML is a subset of
artificial intelligence that uses computational algorithms
that learn and improve from experience.4,11 In its most
simplistic form, this involves using sets of real-world data
to predict or estimate an outcome.2,4,11 These data sets rep-
resent “training sets” that the machine is then able to study
and draw inferences from, or “learn,” using pattern recog-
nition to make decisions on its own.4 Such conclusions are
compared with a testing set of actual outcomes to quantify
the accuracy of the algorithm. As the data in the training
sets grow and the number of testing repetitions increases,
akin to “experiential learning,” the machine’s algorithm
becomes more accurate and predictive.

Logistic regression (LR) represents the most primitive
form of ML and has been frequently applied in the litera-
ture.6,7 However, regression analysis is static and not pre-
dictive, meaning that it does not autoregulate to “learn”
from complex data relationships, especially when more
data inputs are added. This study represents the first foray,
to our knowledge, in the sports medicine literature apply-
ing complex ML algorithms in which LR is compared
against different ML algorithms. In this study, player char-
acteristics, injuries, and performance metrics from 2000 to
2017 served as the initial training set from which the
machine learned relationships to predict the most likely
outcome for future players with similar profiles from a test-
ing set. We hypothesized that, despite the complex scenar-
ios that result in injuries and placement on the DL, an ML
model trained in historical injury data may be capable of
assessing the future injury risk in MLB players with high
validity. Moreover, the anatomic location of the injury may
be correctly predicted to target prevention. We believe that
modern ML algorithms will be more representative models
than primitive LR analyses in all clinical scenarios. For the
purpose of leveraging available analytics to permit data-
driven injury prevention strategies and informed decisions,
the objective of this study of MLB players was to (1) char-
acterize the epidemiology of injury trends on the DL from
2000 to 2017, (2) determine the validity of an ML model in
predicting the injury risk for the subsequent year and ana-
tomic injury location, and (3) compare the performance of
modern ML algorithms versus LR analyses.

METHODS

Data Source and Database Creation

The data for this study were obtained from several readily
accessible and validated sources previously studied in the
literature: Baseball-Reference,19 FanGraphs,12 MLB’s Base-
ball Savant,3 and Professional Baseball Transactions
Archive.21 These databases were cross-referenced to validate
their content, and redundant variables were kept only if they
were the same to a margin of error of less than 1%. Data from
Baseball-Reference and FanGraphs were downloaded using
the open-source pybaseball package, and a custom Python
(Version 3.7.3; Python Software Foundation) programming
language script was developed to download data from both
MLB’s Baseball Savant and Professional Baseball Transac-
tions Archive.21 Injury data were coded by the designated
list (10-day, 15-day, or 60-day DL) to which the player was
assigned (if applicable), the site of injury (knee, back, hand,
foot/ankle, shoulder, elbow), if the injury required surgery,
whether the injury required placement in the minor league
for rehabilitation, or whether the injury resulted in the
player’s being unable to play for the rest of the season. The
total number of days away from sport was also tabulated as
the sum of the total days on the DL plus 1 day for every
injury labeled as a day-to-day injury (eg, if the player had
an upper respiratory infection). Rookies, for whom prior
injury data were unavailable, were not included in the study.

Once the raw data were collected, they were compiled
using R (Version 3.5.1; R Foundation for Statistical Comput-
ing) and Python.24,25 All player injuries were grouped by
year and summed to arrive at the total number of injuries
for that year. These data were then paired to player statis-
tics for each season, resulting in a list of player statistics and
injuries for each season in which they were in the major
leagues. The full data-processing code can be viewed at
https://github.com/JaretK/BaseballInjuryLearning.

Data Processing and Feature Selection

Age, performance data, professional injury history, and DL
data were inputted for each player across every MLB year
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that he played. Performance data included sabermetrics for
hitting (eg, walks, strikeouts, home runs, slugging percent-
age, total bases, number of hits per base, runs batted in),
pitching (eg, walks, strikeouts, number of innings pitched,
number of pitches thrown per pitch type, number of inten-
tional walks), and overall (eg, wins above replacement, win
probability added, leverage index, clutch score). Sabermet-
rics are standardized metrics used to track baseball player
performance (more details on each metric can be found at
https://library.fangraphs.com/). Unique players were
extracted from the databases using their MLB identifica-
tion number.19,21

ML Algorithm Outputs

Algorithms were developed to predict each of the following
7 different outputs related to the subsequent season: next-
season injury, next-season knee injury, next-season back
injury, next-season hand injury, next-season foot/ankle
injury, next-season shoulder injury, and next-season elbow
injury.

ML Model Development and Calibration

Separate models were built for position players and pitch-
ers. For each player group, we built models to predict 1 of
the 7 clinical outcomes (next-season injury, next-season
knee injury, next-season back injury, next-season hand
injury, next-season foot/ankle injury, next-season shoulder
injury, and next-season elbow injury). For each clinical out-
come, 6 different model algorithms were created: LR, ran-
dom forest, k-nearest neighbors, Naı̈ve Bayes, XGBoost,
and top 3 ensemble.10,17 Thus, a total of 84 models were

formed: (2[players and pitchers] � 7[clinical outcomes] �
6[different model algorithms]). Models were built using the
scikit-learn Python library (Version 0.20.3) and XGBoost
(Version 1.0.2).18,20,25,26 The ensemble classifier is a combi-
nation of the top 3 performing models (“top 3 ensemble”) for
each clinical outcome. The ensemble classifier was built
using “soft voting,” in which the model decided to classify
a patient as “yes injury” or “no injury” on the average of
each model’s predicted probability of an injury. All avail-
able data were fed into each model, including year of play to
account for any temporal trends in the injury incidence.
Each model utilized a 10 k-fold strategy to cross-validate
the model output; 10 k-folds require that 90% of the data be
used to train the model, and the remaining 10% is used to
test the model in an unbiased fashion. This step is repeated
a total of 10 times, using a separate 10% of the data each
iteration. This way, all of the data are eventually used to
test the model without also being used to train each model
(ie, 10% used to test the model per iteration, with 10 total
iterations). Feature importance was calculated using the
XGBoost model using the Gini importance metric. Figure
1 illustrates the flow of algorithm development and testing,
with application to new player data.

All ML algorithms must be calibrated. The algorithms
were tested for calibration against one another to ensure
that the probability of a player injury was appropriately
calculated.

Statistical Analysis

Descriptive statistics were calculated for the cohort. The
weight of the input variables contributing to the overall
injury risk was calculated using SHAP (SHapley Additive

Figure 1. Schematic demonstrating machine learning algorithm development and testing.
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exPlanations) scores.9 Receiver operating characteristic
(ROC) curves and probability calibration curves were cre-
ated for each outcome. Each model was compared using
accuracy, area under the ROC curve (AUC), F1 score, and
Brier score loss (BSL).15 AUC values of <0.7 are poor,
�0.7 are fair, �0.8 are good, and �0.9 are excellent.30

The accuracy of the model summarizes the number of
players correctly classified divided by the total number
of players in each analysis. An F1 score represents the
weighted average of precision and recall.13 Poor F1
scores are closer to 0, whereas better F1 scores are
closer to 1.13 A lower BSL indicates a superior model
and signifies the mean squared difference between the
predicted probability and the actual probability.15

Because actual probabilities are necessarily 0 or 1, a
perfect BSL (indicating a perfectly calibrated model) is
0 when predicted probabilities are equal to actual prob-
abilities. Conversely, a BSL of 1 means that the pre-
dicted probabilities are the opposite of the actual
probabilities.8 R was used for all statistical analyses.

RESULTS

Player Cohort

The position player group consisted of 9325 player-years
(1931 unique players with a mean of 4.83 years of partici-
pation in MLB) from 2000 to 2017. Player injury character-
istics are summarized in Table 1. A total of 4091 (44.0%)
position player–years had prior injuries requiring loss of
playing time, while 5225 (56.0%) had no evidence of inju-
ries. Of the injuries that we collected, 147 player-years
(1.6%) had at least 1 placement on the 10-day DL, 1859
(19.9%) had at least 1 placement on the 15-day DL, and
496 (5.3%) had at least 1 placement on the 60-day DL. A
total of 3052 player-years (32.7%) had injuries that were
designated as day to day but missed at least 1 game because
of an injury.

The pitcher group consisted of 4657 player-years (1245
unique pitchers with a mean of 3.74 years played) from
2000 to 2017. A total of 2030 (43.6%) pitcher-years had prior
injuries requiring loss of playing time (including day-to-day
injuries). Of the injuries that we collected, 88 player-years
(1.9%) had at least 1 placement on the 10-day DL, 1040
(22.3%) had at least 1 placement on the 15-day DL, and
319 (6.9%) had at least 1 placement on the 60-day DL. A
total of 1004 player-years (21.6%) had injuries that were
designated as day to day but missed at least 1 game because
of an injury.

Injuries were subanalyzed by anatomic location and
are summarized in Table 1. Overall, 37.2% of all knee
injuries required DL placement, as did 27.2% of all
back injuries, 34.8% of hand injuries, 35.0% of foot and
ankle injuries, 50.4% of shoulder injuries, and 56.6% of
elbow injuries. The 3176 players who were injured
spent a total of 108,656 days injured, resulting in a
mean of 34.21 total days per player for the duration of
the study.

Predicting Next-Season (Future) Injuries

We predicted next-season injuries utilizing the injury and
performance data from each player’s most recent season.
Eachplayer-yearwas treated independently fromevery other
(ie, past injuries were not propagated through to future
years). Each player-year was used to train the model using
the performance data for the current year to predict injuries
in the subsequent year. Thus, if a player was in the league for
5 complete years, his data would be used to train the model a
total of 4 times (the last year was not used to train the model,
as he would not have available future injury data).8,9 The
model with the highest AUC for position players was the top
3 ensemble, with a mean AUC across 10 k-fold iterations of
0.76 ± 0.02. This model also had the best accuracy, at 70.0% ±
2.0%. Other models with their associated metrics are shown
in Table 2. The top 3 ensemble’s ROC curves for each k-fold
and the mean ROC curve are shown in Figure 2. Variables
ranked by relative importance for predicting future position
player injuries are shown in Figure 3.

The models with the highest AUC for pitchers were
random forest and the top 3 ensemble, both with a mean
AUC across 10 k-fold iterations of 0.65 ± 0.02. The top 3
ensemble model had the highest accuracy, at 63.7% ±
2.0%. Other models with their associated metrics are
shown in Table 3. The top 3 ensemble’s ROC curves
for each k-fold and the mean ROC curve are shown in
Figure 4.

TABLE 1
Player Injury Characteristicsa

Player-Years, n (%)

Position players
Total 9316 (100.0)
With prior injuries 4091 (44.0)
Without prior injuries 5225 (56.0)
�1 placement on 10-day DL 147 (1.6)
�1 placement on 15-day DL 1859 (19.9)
�1 placement on 60-day DL 496 (5.3)
�1 game missed because of day-to-day

injuries
3052 (32.7)

Pitchers
Total 4657 (100.0)
With prior injuries 2030 (43.6)
Without prior injuries 2627 (56.4)
�1 placement on 10-day DL 88 (1.9)
�1 placement on 15-day DL 1040 (22.3)
�1 placement on 60-day DL 319 (6.9)
�1 game missed because of day-to-day

injuries
1004 (21.6)

Combined
Knee injury 955 [355] (6.8)
Back injury 1201 [327] (8.6)
Hand injury 1668 [581] (11.9)
Foot and ankle injury 925 [324] (6.6)
Shoulder injury 1129 [569] (8.1)
Elbow injury 643 [364] (4.6)

aValues in brackets indicate those requiring DL placement. DL,
disabled list.
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Predicting Location of Injury

For position players, the top 3 ensemble was the best pre-
dictive model for future injuries of each anatomic region,
with the exception of the elbow, based on the AUC. Elbow
injuries were best predicted with LR, with an accuracy of
63.0% ± 3.6% and an AUC of 0.61 ± 0.08. Table 4 shows the
accuracy, AUC, F1 score, and BSL of the models with the
highest AUCs for predicting future anatomic injuries.
Based on the AUC, the top 3 ensemble was the best predic-
tive model among pitchers for each of the 4 anatomic
regions studied, as seen in Table 5. Given the lower AUCs
with pitchers, the determinants of predicting an injury
were not calculated.

DISCUSSION

ML and performance-related big data surrounding MLB,
colloquially known as “sabermetrics,” have reached an ech-
elon in which both may be symbiotically applied to answer
questions previously thought to be unanswerable. After
building a database requiring careful compilation of data
from 13,982 player-years of performance and injury data
from 1931 position players and 1245 pitchers, we analyzed
usage of the DL over the past 17 seasons. From this, we
found that 44.0% of position players and 43.6% of pitchers
had prior injuries. The hand and back were the most com-
monly injured regions among position players, whereas
shoulder and elbow injuries occurred most frequently in the

TABLE 2
Models Predicting Future Injuries Among Position Playersa

Model Accuracy, % AUC F1 Score Brier Score Loss

Logistic regression 68.7 ± 1.9 0.74 ± 0.021 0.68 ± 0.027 0.20 ± 0.008
Random forest 69.0 ± 2.0 0.75 ± 0.020 0.70 ± 0.027 0.20 ± 0.008
k-nearest neighbors 60.1 ± 1.9 0.64 ± 0.017 0.59 ± 0.027 0.29 ± 0.010
Naı̈ve Bayes 62.7 ± 3.0 0.71 ± 0.027 0.59 ± 0.071 0.35 ± 0.035
XGBoost 69.0 ± 2.1 0.75 ± 0.021 0.70 ± 0.029 0.20 ± 0.008
Top 3 ensemble 70.0 ± 2.0 0.76 ± 0.020 0.70 ± 0.029 0.20 ± 0.008

aValues are reported as mean ± SD across 10 k-folds. AUC, area under the receiver operating characteristic curve.

Figure 2. Position player receiver operating characteristic (ROC) curve for predicting future injuries based on prior-season
performance and injuries, with sensitivity on the y-axis and 1-specificity on the x-axis. Area under the ROC curve (AUC) values
of <0.7 are poor, �0.7 are fair, �0.8 are good, and �0.9 are excellent.
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pitcher group. Once this database using publicly reported
injuries was complete, we applied LR and advanced ML
techniques to assess viability using an algorithm capable
of predicting injuries among MLB players before they
occurred. Using age, performance data, injury history, and
DL data from 17 seasons, we found that our provisional
models were predictive of next-season injuries with fair
reliability (AUC ¼ 0.71-0.80) among position players and
poor reliability (AUC ¼ 0.61-0.69) in pitchers using the top
3 ensemble model. The expected anatomic region of injury
demonstrated poor to fair reliability depending on the site.
The most important determinants of injury prediction for
the subsequent year, in descending order, were as follows:
prior injury, weighted cutter runs per 100 pitches, wins

above replacement, and player age. Models for pitchers had
lower reliability compared with the position player models,
perhaps because of the limited data specific to overuse inju-
ries available among modern pitcher databases. Impor-
tantly, however, we established that advanced ML models
are superior to LR, as advanced ML models, usually the top
3 ensemble and random forest, outperformed LR in terms of
the AUC in 13 of the 14 cases.

With the ubiquity of computing power and the availabil-
ity of large patient data sets, ML represents a form of arti-
ficial intelligence that warrants expansion into sports
injury prevention and risk management using data-
driven predictive analytics. While the simultaneous analy-
sis of thousands of player profiles cannot be fully explained,

Figure 3. Variables ranked by relative importance for predicting future injuries among position players. Previous injuries and
weighted cutter runs per 100 pitches were the most important variables in predicting outcomes. The relative importance is
expressed as a fraction based on the weight of each variable, with 1.0 being the most important and 0.0 having no contribution
to the model. DL, disabled list.

TABLE 3
Models Predicting Future Injuries Among Pitchersa

Model Accuracy, % AUC F1 Score Brier Score Loss

Logistic regression 60.9 ± 3.0 0.64 ± 0.03 0.54 ± 0.04 0.24 ± 0.003
Random forest 62.2 ± 2.0 0.65 ± 0.02 0.54 ± 0.02 0.23 ± 0.005
k-nearest neighbors 54.6 ± 3.3 0.54 ± 0.03 0.42 ± 0.02 0.33 ± 0.023
Naı̈ve Bayes 58.9 ± 2.6 0.62 ± 0.03 0.38 ± 0.08 0.41 ± 0.024
XGBoost 60.3 ± 2.1 0.64 ± 0.01 0.54 ± 0.03 0.24 ± 0.004
Top 3 ensemble 63.7 ± 2.0 0.65 ± 0.02 0.55 ± 0.02 0.23 ± 0.003

aValues are reported as mean ± SD across 10 k-folds. AUC, area under the receiver operating characteristic curve.
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Figure 4. Pitcher receiver operating characteristic (ROC) curve for predicting future injuries based on prior-season performance
and injuries, with sensitivity on the y-axis and 1-specificity on the x-axis. Area under the ROC curve (AUC) values <0.7 are poor,
�0.7 are fair, �0.8 are good, and �0.9 are excellent.

TABLE 4
Best Performing Models Predicting Future Injuries Among Position Players, as Determined by the Highest AUCa

Accuracy, % AUC F1 Score Brier Score Loss

Future knee injury (top 3 ensemble) 90.0 ± 1.3 0.68 ± 0.04 0.10 ± 0.07 0.10 ± 0.010
Future back injury (top 3 ensemble) 89.0 ± 1.4 0.73 ± 0.03 0.22 ± 0.06 0.11 ± 0.010
Future hand injury (top 3 ensemble) 84.2 ± 1.7 0.71 ± 0.04 0.23 ± 0.03 0.13 ± 0.010
Future foot/ankle injury (top 3 ensemble) 90.7 ± 0.9 0.67 ± 0.04 0.06 ± 0.04 0.11 ± 0.005
Future shoulder injury (top 3 ensemble) 93.2 ± 0.9 0.64 ± 0.05 0.06 ± 0.05 0.09 ± 0.004
Future elbow injury (logistic regression) 63.0 ± 3.6 0.61 ± 0.08 0.07 ± 0.02 0.23 ± 0.007

aValues are reported as mean ± SD across 10 K-folds.

TABLE 5
Best Performing Models Predicting Future Injuries Among Pitchers, as Determined by the Highest AUCa

Accuracy, % AUC F1 Score Brier Score Loss

Future knee injury (top 3 ensemble) 83.0 ± 1.1 0.58 ± 0.04 0.24 ± 0.07 0.13 ± 0.01
Future back injury (random forest) 94.2 ± 1.4 0.73 ± 0.04 0.54 ± 0.04 0.06 ± 0.01
Future hand injury (top 3 ensemble) 92.9 ± 1.3 0.70 ± 0.06 0.11 ± 0.07 0.06 ± 0.01
Future foot/ankle injury (top 3 ensemble) 87.0 ± 0.8 0.57 ± 0.04 0.33 ± 0.05 0.15 ± 0.01
Future shoulder injury (top 3 ensemble) 83.0 ± 1.9 0.63 ± 0.04 0.23 ± 0.04 0.14 ± 0.01
Future elbow injury (top 3 ensemble) 86.6 ± 1.9 0.61 ± 0.06 0.17 ± 0.05 0.12 ± 0.01

aValues are reported as mean ± SD across 10 k-folds. AUC, area under the receiver operating characteristic curve.
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and the “black box” phenomenon is created with ML mod-
els, these dynamic algorithms are not unlike the clinical
experience of an evolving surgeon in that they improve with
additive data or “experience.” This study does not represent
the first attempt to apply ML to baseball. Yang and
Swartz29 created a Bayesian model expressed as a Markov
chain that predicted division winners partway through a
single season by combining prior winning percentages,
overall batting ability, and the starting pitcher’s earned
run average. Several ML analyses are well-described (ie,
LR and random forest) in the literature already and may
assist the team physician in predicting injuries or identify-
ing subclinical abnormalities.5,16,17,23,27

Given the array of classic (ie, LR, random forest) and
advanced modeling techniques, the results of this study dem-
onstrate 3 important takeaway points to guide future ortho-
paedic and sports medicine research in this new frontier of
injury modeling. First, a single predictive model is not neces-
sarily ideally suited for all clinical questions posed. Specifi-
cally, the top 3 ensemble was the model with the highest AUC
for predicting next season’s injury risk among position
players and pitchers, but random forest was superior in pre-
dicting back injuries among pitchers. Thus, no single model
represents a panacea, and we recommend that an advanced
data engineer work in concert with professional franchises
and medical professionals to determine the best-suited model
for the clinical question. Second, we illustrated that with
more iterations, the algorithm continued to improve or
“learn.” After the 10th iteration of the next-season injury risk
model for position players, the AUC improved to 0.80, reach-
ing good validity, and was proven to be dynamic (unlike static
LR analyses). Third, this is the first study in the sports med-
icine literature to demonstrate that regression analysis is not
necessarily the gold standard when forecasting and predict-
ing risk, especially in the intersecting world of big data, in
which performance metrics, injury profiles, and sports med-
icine interventions are increasingly valued.

Beyond the analytic aspect of ML, how can these findings
guide care of these elite MLB athletes? This algorithm
offers the orthopaedic surgeon longitudinally caring for
these players to more synchronously work with coaching
and franchise management using quantitative, not qualita-
tive, metrics. The model may identify players at risk for a
shoulder injury during the subsequent year and prompt
earlier targeted examinations, ushering in the era of
“precision medicine” on the field. Earlier guided interven-
tions may offer targeted medical attention that reduces
time away from the game during critical moments, such
as the playoffs. This approach offers key integration points
with the growing wearable market and certain companies
that are applying ML algorithms to study human activities
(including pitching and batting in real time) through sen-
sors on the shoulder and elbow. As we continue to work
with professional MLB franchises and acquire more specific
pitcher data, this will certainly improve and may identify
injuries in this specific population during practice to guide
an athlete’s availability and risk profile. This may allow
team physicians and franchise personnel to make strategic
decisions to withhold a pitcher from a rotation and quantify
the value of rest and recovery, opening a new frontier that

may provide a new perspective on how we approach recov-
ery protocols and postoperative restrictions. For franchises
seeking to identify at-risk players, individual player data
may be uploaded into the algorithm and can provide the
franchise and medical personnel with up to 70% accuracy
on whether the player will sustain an injury the following
year, allowing the franchise to make informed recruiting
decisions. Team physicians may similarly use these tools
in expectation management and patient counseling, with
the ability to discuss the statistical likelihood of future inju-
ries with players. To a lesser degree, ML was capable of
identifying the anatomic region where the injury was likely
to occur. This finding may be readily applied to provide the
player in question with targeted physical therapy and neu-
romuscular adaptations.27

While current injury predictive modeling demonstrates
limitations that make current deployment untenable, future
refinement of these algorithms offers tangible potential util-
ity. Knowledge of which players are likely to incur an injury
has the potential of offering not only early interventions but
also informed decision making for the organization before
signing players to multiyear, multimillion-dollar contracts.28

Certainly, the ethics of predicting injuries merits a discus-
sion. The implication of assigning a player such a value runs
the risk of diminishing the player’s value to a franchise.
However, a player’s predisposition to injuries has always
been under qualitative consideration; this algorithm simply
applies a quantitative probability of an injury. Conversely,
players who are less likely to sustain injuries may experience
an increase in value for availability. This algorithm may be
used as a risk-management tool for professional players from
the franchise’s perspective. It is conceivable that applying
player-specific data to develop algorithms may not be in the
best interest of the MLB Players Association (MLBPA) and
may cause sufficient concern to highly regulate the develop-
ment of these advanced models.

Our study had several limitations. First, we were limited
by the granularity of available data. Because of inabilities
to determine nuanced injury characteristics, such as imag-
ing and physical examination findings, we could not discern
at this stage whether the future injury would be attributed
to, for example, an elbow sprain versus a complete tear of
the medial ulnar collateral ligament. Additionally, we were
unable to capture the impact that chronic, lingering inju-
ries may have on future injuries, as team-reported injuries
are generally acute and severe enough to withdraw players
from games. We also acknowledge that the lack of anatomic
specificity of our data prediction algorithm does highlight
the limited immediate clinical utility of such a model. How-
ever, this proof-of-concept study provides the framework
for future studies that, with more granular data, may
potentially explore more specific injury prediction. The
large size of our database, sourced from multiple databases
across the entire MLB population for 17 years and cross-
referenced for accuracy, gives confidence that our advanced
ML model can deduce future injury prediction with mean-
ingful accuracy in the absence of a formal power analysis.

Another limitation was the sources of input of the databases
utilized to obtain MLB player injury history and performance
data. As previously stated, information was collected from 4
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online baseball databases: Baseball-Reference, FanGraphs,
MLB’s Baseball Savant, and Professional Baseball Transac-
tions Archive. Both Baseball-Reference and FanGraphs are
privately owned entities that compile information from a vari-
ety of sources, including companies that specialize in sports
data acquisition and commerce. No public information is avail-
able on Professional Baseball Transactions Archive’s method
of data collection. These 3 databases are not regulated by MLB
and should naturally be evaluated with a degree of uncer-
tainty. Baseball Savant, on the other hand, is endorsed by
MLB; however, this database only publishes statistics starting
in 2015. Moreover, we did not use the official MLB HITS data,
as the HITS contains 6 years of data and is presently restricted
from any performance-based analyses upon query and
requires MLBPA approval. While public databases are cer-
tainly prone to inaccuracy and underreporting, a larger data-
base with publicly reported DL and injury data is more than
sufficient to preliminarily determine that these advanced com-
putational techniques are predictive of future injuries, supe-
rior to regression analysis, and warrant further exploration.
Compared with the position player data, the pitcher data were
relatively less specific in terms of predictive variables, as fac-
tors such as practice pitch count, throwing form, and prior
treatment modalities specific to this niche population were not
included in the database. Thecurrent data set is limited toonly
game metrics and contains no wearable-based throwing
motion data. Additional pitcher data, including pitch count
and pitch type, may be readily added into our dynamic algo-
rithm in the future to strengthen its accuracy and prediction
confidence.

Despite the limitations of the present study, ML may have
potential to play a role in the future of sports medicine. We
found that player characteristics such as age, injury history,
and performance metrics quantitatively predicted the injury
risk for the subsequent year among MLB position players.
The location of injury exhibited fair reliability, particularly
with the back and hand in position players and pitchers. For
pitchers, the prediction algorithms were shown to be less
predictive than those used to make the position player mod-
els. This is likely because of generalized input parameters
that require position-specific optimization to this niche
population. While more data for the dynamic algorithm are
required to strengthen insights predictive of injuries among
these elite athletes, the prospect of applying ML to an elite
sports population warrants further exploration, as it demon-
strates superiority to the previous gold standard regression
analysis, offers quantitative risk management for fran-
chises, and presents an opportunity for targeted preventive
interventions for medical personnel.

CONCLUSION

This study affirms the potential of ML in the prediction of
the next-season injury risk for MLB players as well as the
prediction of the injury’s anatomic location. Advanced ML
models generally outperformed LR and demonstrated fair
capability of predicting whether a publicly reportable
injury was likely to occur the next season, including ana-
tomic region, for position players, although not for pitchers.

This study is one example of the potential integration of ML
into the practice of clinical sports medicine and provides a
foundation for future studies.
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