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Background: Artificial intelligence (AI) aims to simulate human intelligence using automated computer
algorithms. There has been a rapid increase in research applying AI to various subspecialties of ortho-
pedic surgery, including shoulder surgery. The purpose of this review is to assess the scope and validity
of current clinical AI applications in shoulder surgery literature.
Methods: A systematic literature review was conducted using PubMed for all articles published between
January 1, 2010 and June 10, 2022. The search query used the terms as follows: (artificial intelligence OR
machine learning OR deep learning) AND (shoulder OR shoulder surgery OR rotator cuff). All studies that
examined AI application models in shoulder surgery were included and evaluated for model perfor-
mance and validation (internal, external, or both).
Results: A total of 45 studies were included in the final analysis. Eighteen studies involved shoulder
arthroplasty, 13 rotator cuff, and 14 other areas. Studies applying AI to shoulder surgery primarily
involved (1) automated imaging analysis including identifying rotator cuff tears and shoulder implants
(2) risk prediction analyses including perioperative complications, functional outcomes, and patient
satisfaction. Highest model performance area under the curve ranged from 0.681 (poor) to 1.00 (perfect).
Only 2 studies reported external validation.
Conclusion: Applications of AI in the field of shoulder surgery are expanding rapidly and offer patient-
specific risk stratification for shared decision-making and process automation for resource preservation.
However, model performance is modest and external validation remains to be demonstrated, suggesting
increased scientific rigor is warranted prior to deploying AI-based clinical applications.

© 2023 The Author(s). Published by Elsevier Inc. on behalf of American Shoulder & Elbow Surgeons.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).
Applications of artificial intelligence (AI) are growing in medi-
cine and surgery. AI is a broad term used to describe the develop-
ment and application of computer systems that simulate human
intelligence, with machine learning (ML) considered a subset of AI.
AI involves the development of algorithms that can be “trained” to
classify or predict a certain output based off certain inputs. To
develop these models, they must first be “trained” using a large
dataset by feeding the AI model the inputs and outputs of a large
dataset, from which it identifies any possible patterns and re-
lationships using human-like intelligence. After being “trained”, a
new “testing set” of data is used to assess the accuracy of the model
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by comparing the outputs that the model predicts to the known
outcomes. As such, the accuracy can be quantified and the model
refined, and new data can continue to be inputted to further
strengthen the model’s power. Once deemed to be of optimal ac-
curacy, the AI model can be applied to the real-world setting.
Further information regarding the technical essentials of AI for
surgeons has been reviewed extensively.3,18,41,48,53,66

AI is integrated in medicine for various purposes, including
clinical decision support systems, personalizing treatments, disease
diagnostics, drug development, and health monitoring.1 In surgery,
this is particularly important for improving patient outcomes and
reducing both health system and patient costs. Such significant
utility has inspiredmany research studies applying AI to orthopedic
surgery. For example, several studies have developed AI models
that are able to predict postoperative outcomes, length of stay
(LOS), and costs for various procedures including total hip
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Figure 1 PRISMA diagram

P. Gupta, H.S. Haeberle, Z.R. Zimmer et al. JSES Reviews, Reports, and Techniques 3 (2023) 189e200
arthroplasty, total knee arthroplasty, and lumbar spinal
fusion.14,20,25,27,52,57 Likewise, several studies have developed AI
models capable of successfully identifying and differentiating be-
tween implants used in hip and knee arthroplasty using plain ra-
diographs.23,26,47,68 Moreover, AI has also been shown to be able to
predict patient satisfaction or dissatisfaction following lower ex-
tremity arthroplasty.12,16,32,35,36

Integration of AI in the realm of shoulder surgery is already
underway as well. For example, Ramkumar et al evaluated an
iPhone application that uses a ML software development kit for
measuring a patient’s shoulder range of motion (ROM) in 4 arcs,
which was clinically applied to successfully learn and analyze
complex spatial motions of the shoulder joint, as indicated by no
significant difference in the ROM angle measurements between the
software development kit and manual goniometer.51 Similarly,
Predictþ (Exactech, Gainesville, FL, USA), a clinical decision support
tool was recently released, which uses AI to predict patient-specific
outcomes following shoulder arthroplasty.11 Likewise, Food and
Drug Administration-approval was recently obtained for PreView
Shoulder (Genesis Software Innovations, Grand Rapids, MI, USA), an
AI-based software that creates 3D models specific to a patient’s
shoulder anatomy to assist in preoperative surgical planning.21

Due to the rapid advancements being made in applying and
integrating AI in surgery, it is essential for all orthopedic surgeons
to be aware of the technologies being adopted and readiness for
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broad incorporation. In particular, there have been many ad-
vancements in understanding how AI can be applied to shoulder
surgery. However, a thorough review of the current advancements
made in this area has not yet been performed. Thus, the purpose of
this review is to assess the scope and validity of current AI appli-
cations in the shoulder surgery literature.

Materials and methods

Search strategy

We performed a systematic literature review in accordancewith
the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses guidelines. One reviewer independently completed
structured searches using the PubMed database on June 10, 2022 to
search for all available articles published between January 1, 2010
and June 10, 2022. The search query used the terms as follows:
(artificial intelligence OR machine learning OR deep learning) AND
(shoulder OR shoulder surgery OR rotator cuff).

Two reviewers independently screened all titles, abstracts,
and full-text articles. The reference lists of the final articles were
also reviewed and cross-referenced to identify any other addi-
tional pertinent studies that were not found from the keyword
search. The search strategy used in this study is displayed in
Figure 1.
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Eligibility criteria

Standardized inclusion and exclusion criteria were used to
determine study eligibility. Any disagreements or discrepancies
were resolved by consensus. Inclusion criteria were as follows: (1)
involve shoulder surgery; (2) involve AI or ML; (3) clinically or
operatively relevant to orthopedic surgeons; (4) published in En-
glish; (5) published from January 1, 1990 to June 10, 2022; (6)
original studies with level I-IV evidence; and (7) provide extract-
able outcome data. Exclusion criteria were as follows: (1) no orig-
inal, extractable clinical data (ie, review articles, commentaries,
letters to the editor) and (2) no full-text available. Articles were
grouped in the categories of “shoulder arthroplasty”, “rotator cuff”,
or “other”. Studies not pertaining to shoulder arthroplasty or the
rotator cuff were grouped together as “other”.

Data items

For any predictive modeling study (clinical or imaging), per-
formance metrics were evaluated. For studies in which the
dependent variable was categorical, area under the curve (AUC) of a
receiver operating characteristic curve was used as the primary
metric for evaluating model performance. Accuracy was recorded if
AUC was not available. When both AUC and accuracies were re-
ported, the AUC was recorded. For studies in which the dependent
variable was continuous, R2 (coefficient of determination) was
recorded in order to allow for comparisons of model performance
between studies. For imaging studies, if AUC or accuracy were not
available, then the highest Dice (F1) scores obtained were recorded.

A receiver operating characteristic curve is a plot of a model’s
sensitivity (true positive) on the y-axis and its 1-specificity (false
positive) on the x-axis, thereby allowing assessment of a model’s
performance. A perfect model would have 100% sensitivity and
100% specificity and thus an AUC of 1.0. A model with an AUC of 1.0
was considered a perfect discriminator, 0.90-0.99 was considered
excellent, 0.80-0.89 was good, 0.70-0.79 was fair, and 0.51-0.69 was
considered poor.38 Accuracy is determined by the sum of the
number of true positives and true negatives divided by the number
of total cases. Dice similarity coefficient (Dice score, F1 score) is a
broad statistical measure used to assess overlap between two
different datasets. In the context of AI, it is frequently utilized for
evaluating the accuracy and reproducibility of image segmentation
by models by comparing the overlap with the ground-truth.69 Dice
scores range from 0 to 1, with a value of 1 indicating a perfect
match.

For clinical classification studies, model performances against
logistic regression were evaluated by comparing AUC or accuracy.
For clinical studies with continuous variables, performance against
linear regression or other traditional statistics models was
compared by evaluating multiple metrics including root mean
squared error, calibration slope, and R2.

The number of types of models studied were also recorded,
including regression models. If multiple models of the same type
were studied, then the count total was recorded as 1. For example, if
three different deep convolutional neural networks were studied
such as Xception, ResNet50, and InceptionV3, the total number of
types was recorded as 1. External validation was defined as
comparing the performance of the algorithm when applied to an
external cohort, such as that from a different institution or national
database. Studies in which data from a single population was split
into training, validation, and independent test sets were not
considered to have externally validated their models. Additionally,
temporal validation, or using data from the same population ac-
quired during a different time period, was not considered as
external validation. For example, if a single dataset has data from
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the years 2015-2020 but training and validation is used with 2015-
2018 data while testing is used with 2019-2020 data, then it is
considered temporal validation and was not counted as external
validation in this systematic review.

Results

A total of 618 studies were identified from the primary search.
No additional articles were identified after cross-referencing and
reviewing the reference lists. A total of 45 articles were included in
the final analysis.

Shoulder arthroplasty

A total of 18 studies applied AI to shoulder arthroplasty, including
178,237 patients or images (Table I). AI was applied in 12 of the 18
studies for risk prediction (7 for postoperative complications, 3 for
postoperative functional outcomes, and 1 for patient satisfaction), 3
of the 18 studies for imaging (implant identification), and 3 of the
studies for other purposes. Among the 18 studies, 15 studies were
about clinical or imaging prediction/classification, of which 14 of the
studies reported performance in AUC or accuracy. AUCs ranged from
0.689 to 1.00. One study reported only the accuracy, which was
85.92%. In an analysis of studies comparing more than 1 model for
predicting outcomes (9 studies), the model that performed the best
most frequently was XGBoost (5 out of 9 studies; 55.6%). In an
analysis of imaging studies only for implant identification, only deep
learning neural networks performed best (3 of 3 studies). Of the 12
clinical prediction studies, 7 studies compared their model perfor-
mance to traditional statistical models (Table II). Seven out of the 7
studies (100%) reported an AUC higher than that of traditional
models. Zero of the 16 eligible studies were externally validated.

Predicting surgical and medical complications
Five of the studies used AI to predict surgical and medical

complications, including readmissions and nonhome discharge
destination, following shoulder arthroplasty. Gowd et al used the
American College of Surgeons National Surgical Quality Improve-
ment Program (ACS-NSQIP) database to analyze the potential utility
of AI in predicting complications such as surgical site infections,
return to operation room, and deep vein thrombosis/pulmonary
embolism following anatomic total shoulder arthroplasty (aTSA) or
reverse total shoulder arthroplasty (rTSA).13 Similarly, Biron et al
used 4500 patients from the ACS-NSQIP database that underwent
elective TSA to develop ML models for predicting an extended LOS,
defined as 3 or more days.4 By using short LOS as a proxy for
outpatient TSA, the authors believe AI could be used in the future to
assist in identifying optimal candidates for outpatient TSA.4 Like-
wise, Arvind et al also used 9043 primary TSA patients from the
ACS-NSQIP database to evaluate five different AI algorithms for
predicting readmission within 30 days postoperatively.2 Addition-
ally, Lopez et al also selected 21,544 elective TSA patients from the
ACS-NSQIP database to develop and test two AI models for pre-
dicting nonhome discharge and 1 or more postoperative compli-
cations.37 Furthermore, Karnuta et al used 111,147 patients who
underwent aTSA and rTSA from the National Inpatient Sample
database and evaluated artificial neural networks for predicting
LOS, discharge disposition, and inpatient costs.24

Predicting functional outcomes
Three studies have applied ML to predict functional clinical

outcomes following shoulder arthroplasty.30,31,42 Kumar et al used
4782 primary aTSA or rTSA patients from a multicenter database to
build and evaluate the performance of three ML models in pre-
dicting functional outcomes, such as American Shoulder and Elbow



Table I
Artificial intelligence-based studies in shoulder arthroplasty included for analysis.

Author Year Title Subject area Subtopic Number of
subjects

Median
or
average
age (yr)

%
Males

Number of
types of
models
evaluated

External
validation?

Devana SK 2022 Development of a machine
learning algorithm for
prediction of complications and
unplanned readmission
following primary anatomic
total shoulder replacements

Shoulder Arthroplasty Clinical Predictions 10,302 patients 71 45.88 5 No

Kumar V 2022 Using machine learning to
predict internal rotation after
anatomic and reverse total
shoulder arthroplasty

Shoulder Arthroplasty Clinical Predictions 6468 patients 70.4 38.8 3 No

Arvind V 2021 Comparison of machine
learning techniques to predict
unplanned readmission
following total shoulder
arthroplasty

Shoulder Arthroplasty Clinical Predictions 9043 patients 69.4 43.6 5 No

Devana SK 2021 Development of a machine
learning algorithm for
prediction of complications and
unplanned readmission
following reverse total shoulder
arthroplasty

Shoulder Arthroplasty Clinical Predictions 2799 patients 69 51 5 No

Kumar V 2021 Using machine learning to
predict clinical outcomes after
shoulder arthroplasty with a
minimal feature set

Shoulder Arthroplasty Clinical Predictions 5774 patients 70.1 39.3 1 No

Lopez CD 2021 Using machine learning
methods to predict nonhome
discharge after elective total
shoulder arthroplasty

Shoulder Arthroplasty Clinical Predictions 21,544 patients 69.1 44.7 2 No

McLendon PB 2021 Machine learning can predict
level of improvement in
shoulder arthroplasty

Shoulder Arthroplasty Clinical Predictions 472 patients 68 56 3 No

Polce EM 2021 Development of supervised
machine learning algorithms
for prediction of satisfaction at
2 years following total shoulder
arthroplasty

Shoulder Arthroplasty Clinical Predictions 413 patients 66 58.6 5 No

Kumar V 2020 What is the accuracy of three
different machine learning
techniques to predict clinical
outcomes after shoulder
arthroplasty?

Shoulder Arthroplasty Clinical Predictions 4782 patients 70 39.9 3 No

Karnuta JM 2020 The value of artificial neural
networks for predicting length
of stay, discharge disposition,
and inpatient costs after
anatomic and reverse shoulder
arthroplasty

Shoulder Arthroplasty Clinical Predictions 90,792 patients 69 40.8 1 No

Biron DR 2020 A novel machine learning
model developed to assist in
patient selection for outpatient
total shoulder arthroplasty

Shoulder Arthroplasty Clinical Predictions 3128 patients 69.4 44.9 1 No

Gowd AK 2019 Construct validation of machine
learning in the prediction of
short-term postoperative
complications following total
shoulder arthroplasty

Shoulder Arthroplasty Clinical Predictions 17,119 patients 69.5 56.2 6 No

Sultan H 2021 Artificial intelligence-based
recognition of different types of
shoulder implants in X-ray
scans based on dense residual
ensemble-network for
personalized medicine

Shoulder Arthroplasty Imaging 597 images N/A N/A 1 No

Yi PH 2020 Automated detection and
classification of shoulder
arthroplasty models using deep
learning

Shoulder Arthroplasty Imaging 482 images N/A N/A 1 No

Urban G 2020 Classifying shoulder implants in
X-ray images using deep
learning

Shoulder Arthroplasty Imaging 597 images N/A N/A 5 No

Roche C 2021 Shoulder Arthroplasty Other 3667 patients N/A N/A N/A N/A
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Table II
Performance of deep learning models in shoulder arthroplasty reports analyzed.

Author Year Subject area Best/highest performing model
(or model studied)

Best AUC or R2 AI outperform traditional statistics?

Devana SK 2022 Shoulder Arthroplasty XGBoost AUC 0.689 Yes
Kumar V 2022 Shoulder Arthroplasty XGBoost AUC 0.86 Yes
Arvind V 2021 Shoulder Arthroplasty Random Forest AUC 0.74 Yes
Devana SK 2021 Shoulder Arthroplasty XGBoost AUC 0.681 Yes
Kumar V 2021 Shoulder Arthroplasty XGBoost AUC 0.98 Did not compare
Lopez CD 2021 Shoulder Arthroplasty Artificial Neural Network AUC 0.851 Did not compare
McLendon PB 2021 Shoulder Arthroplasty Unspecified Did not report AUC Did not compare
Polce EM 2021 Shoulder Arthroplasty Support Vector Machine AUC 0.8 Yes
Kumar V 2020 Shoulder Arthroplasty XGBoost AUC 0.97 Yes
Karnuta JM 2020 Shoulder Arthroplasty Artificial Neural Network AUC 0.89 Did not compare
Biron DR 2020 Shoulder Arthroplasty Random Forest AUC 0.77 Did not compare
Gowd AK 2019 Shoulder Arthroplasty XGBoost AUC 0.77 Yes
Lu Y 2022 Rotator Cuff Ensemble R2 0.53 Yes
Vassalou EE 2022 Rotator Cuff XGBoost AUC 0.692 No
Lu Y 2021 Other Gradient-boosted ensemble AUC 0.86 Yes
Bullock GS 2022 Other Linear Regression Only reported regression R2 of 0.41 No
Nicholson KF 2021 Other Gradient boosting Did not report R2 Yes

AUC, area under the curve; R2, coefficient of determination.

Table I (continued )

Author Year Title Subject area Subtopic Number of
subjects

Median
or
average
age (yr)

%
Males

Number of
types of
models
evaluated

External
validation?

Validation of a machine
learning-derived clinical metric
to quantify outcomes after total
shoulder arthroplasty

Menendez ME 2019 Negative patient-experience
comments after total shoulder
arthroplasty

Shoulder Arthroplasty Other 186 patients 69.6 32 N/A N/A

Tschannen M 2016 Regression forest-based
automatic estimation of the
articular margin plane for
shoulder prosthesis planning

Shoulder Arthroplasty Other 72 images N/A N/A 1 No
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Surgeons (ASES) scores, global shoulder function scores, active
abduction, and external rotation at multiple time points post-
operatively.30 Moreover, Kumar et al built upon this study using
5774 aTSA and rTSA patients from a multicenter database by eval-
uating if an ML model with a minimal feature set of only 19 input
parameters is as accurate as a full feature set with hundreds of
inputs in predicting functional clinical outcomes postoperatively.31

Additionally, McLendon et al evaluated the performance of three AI
models in predicting ASES scores at a minimum of 2 years after
shoulder arthroplasty for 472 patients with primary glenohumeral
osteoarthritis.42

Predicting patient satisfaction
Polce et al used 413 eligible patients who underwent primary

aTSA or rTSA at a single tertiary referral center to build and evaluate
the performance of five different AI models in predicting patient
satisfaction at a minimum of two years postoperatively.50 Addi-
tionally, the authors found that the five most important factors for
predicting higher patient satisfaction with the support vector ma-
chine model were higher baseline Single Assessment Numeric
Evaluation score, greater baseline exercise and activity, non-
workers’ compensation insurance status, diagnosis of primary
glenohumeral arthritis, and preoperative duration of symptoms
exceeding two years.50

Implant identification
Three studies applied AI in shoulder arthroplasty to identify

implant types and models.60,67 Yi et al used 482 radiographic
193
images from publicly available repositories to test deep convolu-
tional neural networks in detecting and classifying five different
shoulder arthroplasty implants and differentiating between aTSA
and rTSA.67 Similarly, Sultan et al used 597 publicly available plain
radiographs to evaluate the performance of an AI model in classi-
fying shoulder implants into one of the four manufacturers.60

Likewise, Urban et al70 used 597 plain radiographs to evaluate the
performance of more than 10 different AI models in classifying
shoulder implants of four manufacturers directly from plain
radiographs.

Other
Three studies applying AI in shoulder arthroplasty in other

manners were identified.43,56,62 Tschannen et al used 72 whole
body computed tomography (CT) scans from a single institution to
develop and test a regression forest-based model utilizing CT im-
ages of the upper arm to estimate a relatively accurate articular
margin plane, an important resection plane used for shoulder
arthroplasty procedures.62 Furthermore, previous AI literature was
applied to develop a new clinical outcome measure, the Shoulder
Arthroplasty Smart score, for patients undergoing shoulder
arthroplasty.56 Using prior data to identify preoperative measures
highly predictive of postoperative measures, Roche et al developed
the Shoulder Arthroplasty Smart score that requires only 3 sub-
jective and 3 objective measures and compared its performance to
other similar TSA scores such as the ASES score, Constant score, and
the Simple Shoulder Test score.56 Additionally, Menendez et al used
a machine-learning-based natural language processing software to



Table III
Artificial intelligence-based studies in shoulder arthroscopy included for analysis.

Author Year Title Subject
area

Subtopic Number of
subjects

Median or
average age
(yr)

%
Males

Number of
types of
models
evaluated

External
validation?

Lu Y 2022 Identifying modifiable and non-
modifiable cost drivers of
ambulatory rotator cuff repair:
a machine learning analysis

Rotator Cuff Clinical Predictions 33,976 patients 58 57 7 No

Vassalou EE 2022 Predicting long-term outcomes
of ultrasound-guided
percutaneous irrigation of
calcific tendinopathy with the
use of machine learning

Rotator Cuff Clinical Predictions 100 patients 46 31 2 Yes

Ho TT 2022 Classification of rotator cuff
tears in ultrasound images
using deep learning models

Rotator Cuff Imaging 103 patients (194 images) 59.4 34.9 1 No

Ro K 2021 Deep-learning framework and
computer assisted fatty
infiltration analysis for the
supraspinatus muscle in MRI

Rotator Cuff Imaging 240 patients N/A N/A 1 No

Kang Y 2021 Evaluating subscapularis
tendon tears on axillary lateral
radiographs using deep
learning

Rotator Cuff Imaging 3746 patietns 60.9 56.7 1 No

Lee K 2021 Imbalanced loss-integrated
deep-learning-based
ultrasound image analysis for
diagnosis of rotator-cuff tear

Rotator Cuff Imaging 35 patients (1400 images) N/A N/A 1 No

Shim E 2020 Automated rotator cuff tear
classification using 3D
convolutional neural network

Rotator Cuff Imaging 2124 patients N/A N/A 1 No

Medina G 2021 Deep learning method for
segmentation of rotator cuff
muscles on MR images

Rotator Cuff Imaging 1456 scans (>1030 patients) 56.1 N/A 1 Yes

Taghizadeh E 2021 Deep learning for the rapid
automatic quantification and
characterization of rotator cuff
muscle degeneration from
shoulder CT datasets

Rotator Cuff Imaging 95 patients (103 scans) 70.5 34.7 1 No

Kim Y 2020 Ruling out rotator cuff tear in
shoulder radiograph series
using deep learning: redefining
the role of conventional
radiograph

Rotator Cuff Imaging 7888 patients 59.1 38.2 1 No

Kim JY 2019 Development of an automatic
muscle atrophy measuring
algorithm to calculate the ratio
of supraspinatus in
supraspinous fossa using deep
learning

Rotator Cuff Imaging 240 patients (240 images) N/A N/A 1 No

Lin CC 2014 Combined image enhancement,
feature extraction, and
classification protocol to
improve detection and
diagnosis of rotator-cuff tears
on MR imaging

Rotator Cuff Imaging 48 patients 65.2 43.8 1 No

Wang TF 2021 Unsupervised machine
learning-based analysis of
clinical features, bone mineral
density features and medical
care costs of rotator cuff tears

Rotator Cuff Other 53 patients 55.5 49.1 1 No

MRI, magnetic resonance imaging; CT; computed tomography; 3D, three dimensional.
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evaluate and classify patient-experience comments as positive,
negative, mixed, or neutral after primary TSA and then subse-
quently exploredwhether any patient-level factors or perioperative
outcomes were associated with negative comments.

Rotator cuff

More than 49,678 patients were included from the 13 studies
involving the rotator cuff (Table III). AI was applied in 10 of the 13
194
studies for imaging (2 for ultrasound, 5 for magnetic resonance
imaging (MRI), 2 for plain radiographs, and 1 for CT), 2 for clinical
outcomes, and 1 for other purposes. Six studies reported AUCs,
which ranged from 0.69 to 0.92. Three studies reported accuracies,
which ranged from93.52% to 99.90%. Dice (F1) scores of two studies
were 0.91 and 0.994. One study reported an R2 of 0.53. 90% (9 out of
10) of the imaging studies evaluated deep learning models
including convolutional neural networks (Table IV). Both of the
clinical prediction studies compared their model performance to



Table IV
Performance of deep learning models in shoulder arthroscopy reports analyzed.

Author Year Subject area Sub-Topic Best/Highest performing model (or model studied) Highest AUC, accuracy, Dice achieved

Sultan H 2021 Shoulder Arthroplasty Imaging Dense-residual ensemble network Accuracy 85.92%
Yi PH 2020 Shoulder Arthroplasty Imaging Deep convolutional neural network AUC 1.00
Urban G 2020 Shoulder Arthroplasty Imaging Deep convolutional neural network AUC 0.94
Ho TT 2022 Rotator Cuff Imaging Convolutional neural network AUC 0.845
Ro K 2021 Rotator Cuff Imaging Convolutional neural network Accuracy 99.89%
Kang Y 2021 Rotator Cuff Imaging Multimodal deep learning model AUC 0.83
Lee K 2021 Rotator Cuff Imaging Convolutional neural network Accuracy 93.52%
Shim E 2020 Rotator Cuff Imaging Convolutional neural network AUC 0.92
Medina G 2021 Rotator Cuff Imaging Convolutional neural network Dice score 0.994
Taghizadeh E 2021 Rotator Cuff Imaging Convolutional neural network Dice score 0.91
Kim Y 2020 Rotator Cuff Imaging Deep neural network AUC 0.91
Kim JY 2019 Rotator Cuff Imaging Fully convolutional neural network Accuracy 99.90%
Lin CC 2014 Rotator Cuff Imaging Support Vector Machine AUC 0.844
Mu X 2021 Other Imaging Convolutional neural network Accuracy 97.9%
Wang TF 2021 Other Imaging Convolutional neural network Accuracy 97%
Rodrigues TC 2021 Other Imaging Convolutional neural network Dice score 0.95
Lin B-S 2020 Other Imaging Convolutional neural network Accuracy 94%
Chung SW 2018 Other Imaging Convolutional neural network AUC 0.996
Minelli M 2022 Other Imaging Convolutional neural network Did not report
Hahn S 2022 Other Imaging Deep-learning based reconstruction

(convolutional neural network)
Accuracy 92.6%

Grauhan NF 2022 Other Imaging Convolutional neural network AUC 1.00
Jiang H 2021 Other Imaging Not specified AUC 0.789

AUC, area under the curve.

P. Gupta, H.S. Haeberle, Z.R. Zimmer et al. JSES Reviews, Reports, and Techniques 3 (2023) 189e200
traditional statistical models, in which 50% (1 out of 2) out-
performed traditional statistical models. External validation was
performed in 2 of the 13 studies.

Rotator cuff in ultrasound images
Two of the studies utilized AI for assessing the rotator cuff in

ultrasound images. Ho et al used 194 ultrasound images from a
single institution to train and test five different convolutional
neural networks (CNNs) in visualizing randomized controlled trial
(RCT) location and classify them directly from ultrasound images.19

Similarly, Lee et al developed and trained a novel AI model using a
dataset of 1400 ultrasound images with RCTs of different sizes
(massive, large, medium, and small) for the purpose of segmenting
RCTs from ultrasound images.33

Rotator cuff in magnetic resonance images
Five studies used AI for improving RCT diagnosis from MRI im-

ages. Medina et al71 developed and validated two CNN models for
automated segmentation of rotator cuff muscles from shoulder MRI
images.58 The first model performed well in selecting a scapular
Y-view from a routine sagittal T1-weighted shoulder MRI, and the
second model performed well in segmenting the subscapularis,
supraspinatus, and infraspinatus/teres minor muscles on a
Y-view.58 Similarly, Kim et al developed, trained, and tested an AI
model using 240 MRIs for automated detection of the supra-
spinatus muscle and the fossa region and calculation of the occu-
pation ratio from MRI images.28 Likewise, Ro et al also developed
and tested an AI model using 240 shoulder MRIs for automated
segmentation of the supraspinatus muscle and fossa from MRI
images to assist in calculating the occupation ratio.55 Additionally,
Lin et al developed and tested a support vector machine AI model
using 48 patients in detecting supraspinatus injury from shoulder
MRI images that have undergone enhanced image processing.34

Furthermore, Shim et al used 2214 MRI data to develop an AI
model and evaluate its performance in diagnosing the presence or
absence of an RCT, classifying the tear size, and providing 3D
visualization of the tear location.58
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Rotator cuff in plain radiographs
Kim et al developed, trained, and validated a CNN using 7888

patient cases for ruling out significant RCTs from conventional
shoulder radiographs.29 Similarly, Kang et al used 2779 axillary
lateral shoulder radiographs and clinical information (age, sex, and
so on) to develop and test an AI model’s performance in identifying
subscapularis tears directly from radiographs in patients under-
going arthroscopic surgery.17

Rotator cuff in CT images
Taghizadeh et al used 103 shoulder CT scans to develop and test

an AI model’s performance in automatic quantification and char-
acterization of the overall level of degeneration of rotator cuff
muscles, including muscle atrophy and fatty infiltration, directly
from conventional shoulder CT scans. 61

Outcomes
Lu et al used 33,976 patients from a single New York database to

apply AI for predicting total costs after ambulatory arthroscopic
rotator cuff repair and for identifying important contributors to
total charges.39

Vassalou studied 100 patients who underwent ultrasound-
guided percutaneous irrigation for rotator cuff calcific tendinop-
athy and applied AI for predicting which patients would obtain
complete pain resolution at 1-year follow-up.63

Other
Wang et al aimed to apply AI for investigating the clinical features

(eg, age and sex), bone mineral density features (eg, T-score and
Z-score of lumbar), and medical care costs of RCTs.65 The authors
conducted an unsupervised ML-based analysis of 53 patients with
RCTs to better elucidate any underlying relationships between the
three aforementioned areas.65 The AI algorithm divided the input
dataset into four subgroups and highlighted several characteristics of
each.65 For example, one subgroup had the highest frequency of
osteoporosis, infraspinatus tears, and subscapularis tendon tears,
suggesting that decreased bone mineral density may be directly



Table V
Other AI-related studies that pertain to the shoulder included in analysis.

Author Year Title Subject
area

Subtopic Number of
subjects

Median or
average
age (yr)

% Males Number of
types of
models
evaluated

External
validation?

Mu X 2021 In-depth learning of automatic
segmentation of shoulder joint
magnetic resonance images based
on convolutional neural networks

Other Imaging 800 images N/A N/A 1 No

Wang TF 2021 Convolutional neural network for
automatically segmenting magnetic
resonance images of the shoulder
joint

Other Imaging 800 images N/A N/A 1 No

Rodrigues TC 2021 Three-dimensional MRI bone
models of the glenohumeral joint
using deep learning: evaluation of
normal anatomy and glenoid bone
loss

Other Imaging 185 patients 38.9 years 64% 1 No

Lin B-S 2020 Using deep learning in ultrasound
imaging of bicipital peritendinous
effusion to grade inflammation
severity

Other Imaging 3801 images N/A N/A 1 No

Chung SW 2018 Automated detection and
classification of the proximal
humerus fracture by using deep
learning algorithm

Other Imaging 1891 images 65 31.3 1 No

Minelli M 2022 Measuring the critical shoulder
angle on radiographs: an accurate
and repeatable deep learningmodel

Other Imaging 8467 images N/A N/A 1 No

Hahn S 2022 Image quality and diagnostic
performance of accelerated
shoulder MRI with deep learning-
based reconstruction

Other Imaging 110 images/105
patients

57.6 42.90% 1 N/A

Grauhan NF 2022 Deep learning for accurately
recognizing common causes of
shoulder pain on radiographs

Other Imaging 3644
radiographs
(2442 patients)

N/A N/A 1 No

Lu Y 2021 Understanding anterior shoulder
instability through machine
learning: new models that predict
recurrence, progression to surgery,
and development of arthritis

Other Clinical
Predictions

654 patients 21.7 76.5 7 No

Burns DM 2018 Shoulder physiotherapy exercise
recognition: machine learning the
inertial signals from a smartwatch

Other Other 20 patients 28.9 30 5 N/A

Ramkumar PN 2018 Mobile technology and
telemedicine for shoulder range of
motion: validation of a motion-
based machine-learning software
development kit

Other Other 10 patients 27 50% N/A N/A

Bullock GS 2022 Machine learning does not improve
humeral torsion prediction
compared to regression in baseball
pitchers

Other Clinical
Predictions

407 patients 23.2 100% 5 No

Jiang H 2021 Machine learning-based
ultrasomics for predicting
subacromial impingement
syndrome stages

Other Imaging 324 patients 58 38.60% 1 No

Nicholson KF 2021 Machine learning and statistical
prediction of pitching arm kinetics

Other Clinical
Predictions

168 patients 16.7 100% 5 No

MRI, magnetic resonance imaging.
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contributing to infraspinatus and subscapularis tendon tears.65

Consistent with those findings, another subgroup that had the
lowest rate of osteoporosis had the lowest infraspinatus and sub-
scapularis tendon tears.65

Other

Fourteen studies were included in this category, 9 of which were
related to imaging, 3 were related to prediction models, and 2 were
related to technology (Table V). Vast topics were covered including
predicting humeral torsion in baseball pitchers, grading
196
inflammation severity in bicipital peritendinous effusions, and
automating detection and classification of proximal humerus
fractures from images. AUCs were reported in 4 studies and accu-
racy was reported in 4 studies. AUCs ranged from 0.789 to 1.00, and
accuracy ranged from 92.6% to 97.9%. Dice (F1) score of one study
was 0.95. One study reported an R2 of 0.41 but for only one model.
Deep learning neural networks were the only type of model studied
in the imaging studies. No study was externally validated.

Several studies applied AI to MRI images specifically. Mu et al used
approximately 800 MRI images to test and evaluate the performance
of AI models in automatically segmenting different bony regions of
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interest from shoulder MRIs.46 Similarly, Wang et al also used
approximately 800 MRI images to develop and test an AI model for
automated detection, classification, and segmentation of bone regions
of interest in shoulder MRIs.64 Likewise, Rodrigues et al used over 100
patients to apply AI models for fully automated segmentation of the
glenohumeral joint and quantification of glenoid anatomy, glenoid
bone loss, and humeral anatomy using shoulder MRIs.7 Additionally,
Hahn et al used 110 3-T shoulder MRIs and aimed to improve the
image quality and diagnostic performance of accelerated shoulder
MRIs using AI-based reconstruction techniques and compared it to
standard and accelerated sequences reconstructed conventionally.17

Several studies also applied AI to ultrasound imaging and plain
radiographs. Lin et al applied AI for automated classification of
inflammation severity (normal, mild, moderate, and severe) in
bicipital peritendinous effusions from ultrasound images. Similarly,
Jiang et al applied an ultrasound-based AI model for classifying
stages of subacromial impingement syndrome.22 In regards to plain
radiographs, Chung et al applied AI for automated detection and
classification of proximal humerus factures into four types using
Neer’s classification directly from plain anteroposterior shoulder
radiographs.8 Similarly, Minelli et al applied AI for automated
identification of the three landmarks used to calculate the critical
shoulder angle on anteroposterior radiographs of the shoulder.44

Likewise, Grauhan et al trained and tested an AI model for detect-
ing common causes of shoulder pain, including fractures, osteoar-
thritis, osteosynthesis, endoprosthesis, calcification, and
dislocations, directly from plain radiographs.15

Three AI articles were related to nonimaging prediction models.
Nicholson et al applied AI for creating prediction models for elbow
valgus torque and shoulder distraction force in baseball players
using biomechanical variables such as pitch velocity, stride length,
and maximum shoulder external rotation.49 Similarly, Bullock et al
developed and tested several ML models for predicting humeral
torsion in professional baseball players using input variables such
as player demographics, injury history, and shoulder ROM (external
rotation, internal rotation, and horizontal adduction).5 Additionally,
Lu et al evaluated several AI models in anterior shoulder instability
patients for predicting recurrent instability, progression to surgery,
and the development of symptomatic osteoarthritis.40

Two articles were related to technology. Burns et al built AI
models for classifying shoulder physiotherapy exercises from sensor
data from a smartwatch worn on the person.6 Ramkumar et al
applied AI to assist with measuring shoulder ROM in four different
arcs (abduction, forward flexion, internal rotation, and external
rotation) through a motion-based ML software development kit.51

Discussion

AI may have the potential to change the way orthopedics is
practiced both in the clinic and operating room, particularly in
shoulder surgery. Such cutting-edge technology will optimize
value-based payment models, risk stratification of patients, and
patient outcomes through patient-specific optimization, and
evidence-based shared decision-making models. As highlighted
previously, there has been success in applying AI to shoulder
arthroplasty, rotator cuff patients, and other areas for many
different applications, including predicting medical and surgical
complications, predicting patient outcomes, and identifying im-
plants. Nonetheless, there remains room for caution prior to clinical
translation of AI to shoulder surgery, with the two greatest limi-
tations being the lack of external validation, limiting generaliz-
ability, lack of well-performing models, and limiting accuracy.

Not all studies need ML for analysis, particularly in the setting of
nongranular data. In the study by Gowd et al13, for example, logistic
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regression represents the most rudimentary form of ML and out-
performed advanced AI-based models in predicting adverse events,
particularly surgical site infections. When comparing the distance
traveled between an exotic sports car (ie, AI) and an economical
sedan (ie, logistic regression), the advantage of the sports car in
terms of aerodynamics, horsepower, and other engineering consid-
erations means nothing when both cars are stuck in an unfavorable
environment, like a highway traffic jam (ie, poor quality data and
limited volume of data). Because of the lack of robust, high quality
datasets, the performance of these AI-based algorithms in the
shoulder arthroplasty literature often failed to demonstrate a good to
excellent performance level, as 9 of the 13 evaluated studies
reporting AUCs failed to exceed an AUC of 0.90 (excellent perfor-
mance). It is likely that amodel that is only performing at good or fair
during internal validation will perform poorly when externally
validated.54,59 To improve model performance, there are several
areas to consider. First, large accurate datasets from national and
international regions with tens to hundreds of thousands of patients
are needed. Despite the use of large databases, current sample sizes
in shoulder surgery research are mostly limited within the realm of
AI. Second, high-quality data with multiple input metrics, such as
shoulder-specific physical examination findings, functional out-
comes, patient-reported outcomes, medical complications, and
value-based metrics are needed. Third, it is important to choose the
optimal algorithm for each AI-based application, which should be
carefully selected, based on the type of dataset and anticipated
outputs. Currently, there appears to be an impetus to report studies
utilizing AI without careful consideration of the quality of prediction
from the predictivemodels, or consideration of non-AI-basedmodels
which may represent an acceptable alternative in some cases.

Beyond the lacking efficacy of many of the AI-based shoulder
arthroplasty models, 0 of the 16 studies were externally validated.
Likewise, only 2 of the 13 rotator cuff studies and 0 of the other
studies were externally validated. Several conclusions in the
studies suggest clinical application is imminent but applying these
models to external populations and institutions for algorithm
refinement is needed first. This finding illustrates that currently
published shoulder arthroplasty studies and most rotator cuff
studies using AI to date are exploratory, proof-of-concept reports.
The lack of external validation is a critical limiting factor of current
studies with respect to generalizability. This is an important barrier
to clinical translation of AI-based technologies, as many prediction
models performworse during external validation.54,59 For example,
patient data or datasets from geographically varied sites are
necessary, as there may be practice variations that result in differ-
ential models. Furthermore, future studies should externally vali-
date any models in a prospective setting to better understand how
the model performs in the current health care climate. Surgeons
must be aware that current publicly available websites with risk
calculators in shoulder surgery are based off studies that have only
been internally validated and are not safe nor designed for imme-
diate clinical use. In the case of shoulder arthroplasty, for example,
new surgical techniques, redesigned prostheses and implants,
varying patient populations, and improved medical management
for patients may lead to differences in model performance.

As with other emerging technologies, there are several impor-
tant limitations of AI that need to be addressed and understood.
One major limitation involves the “black box” phenomenon, in
which the users are able to see the inputs and final outputs of the AI
algorithm but are unable to see or understand how the algorithm
reached that final decision. For example, an algorithm may
recommend using a certain prosthesis for rTSA, given the patient’s
medical comorbidities and other preoperative data, but the surgeon
may not be able to determine how it reached this conclusion. This
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phenomenon creates both clinical applicability and ethical di-
lemmas, such as whether these AI-derived clinical tools should be
trusted and if physicians should rely on AI-derived decisions.10 This
concern is slowly being dispelled with analyses that can determine
the weights of risk factors on outcome analyses (ie, SHapley Ad-
ditive exPlanations analysis) or the locations of interest in implant
identification (ie, heatmapping). Another important limitation is
data bias. Any form of bias in the data used for building an AI al-
gorithm will lead to bias in the outcomes and conclusions it rea-
ches. For example, certain algorithms may be developed using
institutional data that has patients that are predominantly from a
certain socioeconomic group or practice that may not be general-
izable to the general population. Likewise, surgeons may have
certain practice preferences that influence their care and decision-
making, leading to algorithms that poorly classify or reach erro-
neous conclusions in other populations that cannot be generalized.
Another important limitation is that algorithms are unable to take
into account contextual information, which requires surgeons to
critically evaluate AI-based decisions and apply them in the
appropriate clinical context, recognizing when to choose differently
than the model suggests. Additionally, there is a current lack of
relevant, AI-specific guidelines for improving the quality and
transparency of data being reported. The transparent reporting of a
multivariable prediction model for Individual Prognosis Or Diag-
nosis (TRIPOD) guidelines involve a 22-item checklist for improving
the quality of reporting for any study focused on prediction
models.45 However, the original TRIPOD guidelines do not apply to
AI research, as these guidelines were designed for traditional
multivariate models such as the logistic regression and Cox
regression. The development of TRIPOD-AI that is specific for pre-
diction model studies based on AI is in progress.9

Conclusion

Applications of AI in the field of shoulder surgery are expanding
rapidly and offer patient-specific risk stratification for shared
decision-making and process automation for resource preserva-
tion. However, model performance is modest and external valida-
tion remains to be demonstrated, suggesting increased scientific
rigor is warranted prior to deploying AI-based applications to the
clinical setting in shoulder surgery. It is important for shoulder
surgeons to be aware of AI-related advancements but to also be
wary before broadly applying algorithms without model efficacy
and external validation.
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