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� Artificial intelligence (AI) provides machines with the ability to perform tasks using algorithms governed by pattern
recognition and self-correction on large amounts of data to narrow options in order to avoid errors.

� The 4 things necessary for AI in medicine include big data sets, powerful computers, cloud computing, and open
source algorithmic development.

� The use of AI in health care continues to expand, and its impact on orthopaedic surgery can already be found in
diverse areas such as image recognition, risk prediction, patient-specific payment models, and clinical decision-
making.

� Just as the business of medicine was once considered outside the domain of the orthopaedic surgeon, emerging
technologies such as AI warrant ownership, leverage, and application by the orthopaedic surgeon to improve the
care that we provide to the patients we serve.

� AI could provide solutions to factors contributing to physician burnout and medical mistakes. However, challenges
regarding the ethical deployment, regulation, and the clinical superiority of AI over traditional statistics and
decision-making remain to be resolved.

Artificial intelligence (AI) is a term coined by John McCarthy
as a theory that computers could eventually learn to perform
tasks through pattern recognition with minimal to no human
involvement1,2. A more modern and accurate definition of AI
is the application of algorithms that provide machines the
ability to solve problems that traditionally required human
intelligence3. In 1976, Jerrold S. Maxmen penned that AI
would bring about the “post-physician era” in the 21st cen-
tury4,5. With the rapid increase in affordable computational
power and exponential increases in extremely large data sets
(“Big Data”), AI has transitioned frommere theory to tangible
application on an unprecedented scale1. By analyzing
extraordinarily large data sets in near real-time, AI has
become fundamentally ingrained within many facets of

society from autonomous driving cars and video streaming
recommendations (Netflix), to online purchase recommen-
dations (Amazon), advertisements (Facebook), and fraud
detection (Capital One).

AI can be thought of as an umbrella term that
encompasses a broad range of subfields, including machine
learning (ML), which in turn contains a subfield called deep
learning (DL) (Fig. 1)6,7. The goal of AI is to allow a machine
(computer) to perform specific tasks that can match or exceed
human performance. Advances in computing power, data
storage, and availability of high-quality data have driven the
expansion of AI into the health-care field. Problems specific to
orthopaedics, such as image recognition, preoperative risk
assessment, clinical decision-making, and analysis of massive
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data sets, are beginning to be addressed using AI-based
methods (Table I). The purpose of the present review is to
provide background on AI, relevant applications to health
care (with a focus on orthopaedics), and challenges with its
use.

What Is AI?
AI has promised to solve a multitude of problems plaguing
society and health care today. The term AI can be difficult to
define. However, understanding what AI is becomes crucial
as the hype of AI is frequently misapplied to many new
technologies or products that may not truly fit the defini-
tion8. Appendix 1 contains a list of AI terms introduced in
this paper that may be useful for future reference. AI at its
core involves machines that can perform tasks innately
characteristic of human intelligence. This includes tasks
like planning, understanding language, recognizing pat-
terns, learning, and problem solving. Most importantly, AI
can learn from mistakes and improve, which resembles
experiential learning.

ML
ML was introduced shortly after AI in 1959 at IBM as a
method of achieving AI9,10. ML algorithms are able to learn
from examples by adjusting their internal parameters
(weights) and strengthening relevant associations to improve
the accuracy of a given model6,9,11. The “learning” that takes
place in ML is achieved by incremental optimization of a
mathematical model12. These models are built using inputted

features (data), which are divided into 2 separate groups: a
training set, which is used to build the mathematical model,
and a testing set, which is used to assess the model’s per-
formance. Mathematical functions are used to match inputs
with desired outputs, which is distinctly different from the
process involved with statistics or traditional programming
(Fig. 2)9,10.

It is possible to produce an AI system (i.e., computer
checkers and chess programs) without using ML, but this
would require extensive coding, complex rules, and decision
trees to account for every single possible move in the game9.
At the risk of oversimplification, the biggest difference
between statistics and AI is the kind of question that is asked.
In statistics, the question is “What is the probability that
some phenomena that I observed occurred just by chance?”
(hypothesis testing). In AI, the question is “When I see a new
entity with a specified set of features, how should I label it?”
(prediction).

The ML training process can either be supervised or
unsupervised13. Supervised ML occurs when the training data
are labeled by humans. For example, if an ML algorithm is
tasked with detecting arthritis on a radiograph, the arthritic
features in addition to relevant clinical information (i.e., joint
space loss, subchondral sclerosis, recent nonsteroidal anti-
inflammatory drug [NSAID] use, patient-reported outcomes,
etc.) must first be manually identified and labeled by a human
along with the label of whether the radiograph is an example
of an arthritic or a normal knee. An algorithm may require
hundreds or thousands of correctly labeled example radio-
graphs, with and without these features, to accurately recog-
nize patterns (“arthritis present” or “arthritis absent”),
achieve enough accuracy, and therefore learn (Fig. 3)14,15. With
supervised ML, inaccurate labeling of data can lead to bias and
error.

In contrast, with unsupervised ML, the training data
are not labeled, the data are not known, but the outcome of
interest is known. To continue with our previous example,
the presence or absence of arthritis on the radiograph
would be known, but the training data are not labeled by
humans. The goal in these cases is pattern recognition as
best determined by the computer. The algorithms look for
clustering or self-organization of the given data in ways that
can lead to the so-called black box phenomenon. The black
box phenomenon occurs when the algorithm detects
potentially unconventional patterns not recognized by
human logic. Therefore, any attempts at retrospective perfor-
mance evaluation of the model are difficult for humans to
understand.

The amount of data required in either supervised or
unsupervised algorithm training has been well illustrated by
Beam and Kohane (Fig. 4)16. Figure 4 presents the relationship
between the degree of human relative to ML involvement and
the magnitude of the data sets required to sufficiently train
existing ML algorithmic examples. The amount of data
required to successfully run unsupervised ML (most DL
examples in Figure 4) is magnitudes larger than for supervised

Fig. 1

The relationship of AI, ML, and DL. (Reproduced, with modification, from:

Chollet F. Deep learning with Python. Shelter Island, NY: Manning Publi-

cations; 2018. Reproduced with permission.)
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ML (“expert AI systems” and “risk calculators”). However,
unsupervised ML is not synonymous with “unmanned” ML.
ML algorithms can be run unsupervised but not without fre-
quent validation of their predictive accuracy17. In many clinical
scenarios, the predictive accuracy suffers because of changes in
practice patterns, patient demographics, or other aspects of the
training data.

DL
DL is a more sophisticated form of ML. DL is capable of
unsupervised learning from unstructured and unlabeled
inputs and filtering out data input from variables of low
relevance to the prediction of interest. DL is modeled after
the brain’s neuronal connections via algorithms termed
artificial neural networks (ANNs). The individual nodes in

TABLE I Notable Examples of Leveraging AI for Orthopaedic Applications

Study Application* Notes

Thong et al.47 (2016) Optimization of 3-D spine model vectors for the auto-
matic detection of adolescent idiopathic scoliosis.

Olczak et al.48 (2017) Identification of fractures from radiographic images

Chen et al.17 (2017) ML-based predictions for physician order entry show
that prioritizing small amounts of recent data is more
effective than using larger amounts of older data toward
future clinical predictions

Concept of decaying clinical data based on
practice patterns is critical to appreciate

Kruse et al.49 (2017) Prediction of hip fractures from dual x-ray
absorptiometry

Cilla et al.50 (2017) Use of ML to optimize short-stem THA design to produce
optimal mechanical performance

Konda51 (2018) An AI system (PersonaCARE) helps manage NYU’s
middle age and geriatric fracture population based on all
of the principles of value-based care

Karnuta et al.52 (2019) Determined that a bundled care model for hip fractures
is an unsustainable value-based model

Ramkumar et al.19 (2019) Predicted length of stay, inpatient costs, and patient
disposition for lower extremity joint replacement

First introduction of the patient-specific
payment model

Shah et al.53 (2019) Automatic measurement and segmentation of articular
cartilage thickness in healthy knees on MRI

Harris et al.54 (2019) Prediction of 30-day complications and mortality
following TJA

Utilized the National Surgical Quality
Improvement Program database

Greenstein et al.55

(2019)
ANN utilization of in-house EMR data to predict skilled
nursing facility utilization following TJA

Fontana et al.56 (2019) ML to preoperatively predict with fair to good accuracy
which patients may achieve minimally clinically
important differences postoperatively in TJA

Study was the subject of Clinical
Orthopaedics and Related Research’s
“Editor’s Spotlight”57

Thirukumaran et al.58

(2019)
Use of NLP to identify orthopaedic surgical site
infections

Galbusera et al.13 (2019) Valuable review of AI and ML in spine research Recommended reading

*3-D = 3-dimensional, ML = machine learning, THA = total hip arthroplasty, NYU = New York University, MRI = magnetic resonance imaging, TJA =
total joint arthroplasty, NLP = natural language processing, ANN = artificial neural networks, and EMR = electronic medical records.

Fig. 2

Illustration of the process involved with statistics or traditional programming (Fig. 2-A) and ML (Fig. 2-B). (Reproduced, with modification, from: Chollet F.

Deep learning with Python. Shelter Island, NY: Manning Publications; 2018. Reproduced with permission.)
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ANNs have discrete layers and connections to other nodes.
The complex layering gives the algorithm its name and ability
to learn more complex and subtle patterns than simple 1 or
2-layer neural networks (Fig. 5)3,18,19. In the osteoarthritis (OA)
example used previously, 1 node may be responsible for edge
contrast, another for pixilation density, another for width,
and so on20. However, only the nodes that are clinically rel-
evant to subchondral sclerosis, cysts, joint space narrowing,
or other yet unknown features of OA will clinch the radio-
graphic diagnosis of OA. The clinical utility of an ML OA
algorithm may be most useful for the nonorthopaedic phy-
sician, orthopaedic trainee, physician assistant, or radiologist
as a teaching, screening, or referral tool. DL has been applied
successfully to complex problems including facial recogni-
tion, handwriting recognition, and vision systems for
autonomous vehicles20.

Natural Language Processing (NLP)
NLP is the study of how computers understand and interpret
human language with the goal of generating structured infor-
mation from unstructured free text. The ability to establish

Fig. 3

Illustration showing how a computer would diagnose arthritis. (Repro-

duced, with permission, from: Kenneth Urish, MD, PhD.)

Fig. 4

Chart showing the relationship between the degree of human relative to ML involvement and the magnitude of the data sets required to sufficiently train

existingML algorithmic examples. ATM= automated tellermachine, EHR= electronic health records, CV= cardiovascular, andMELD=model for end-stage

liver disease. (Reproduced,with permission, from:BeamAL,Kohane IS. Big data andmachine learning in health care. JAMA.2018Apr 3;319[13]:1317-18.

Copyright � 2018 American Medical Association. All rights reserved.)
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order from the massive amounts of patient data contained
within the written text of the electronic medical record
(EMR), emails, and the spoken word is an application of huge
clinical value and of active research. This could take the form
of assisting clinic schedulers with the triage and correct
assignment of patients to practitioners, as well as determin-
ing if nonoperative treatment has failed. This could also be
evident in digital scribes capable of simultaneously creating
real-time office notes while interacting with the EMR, assis-
tance in patient education in preoperative and postoperative
surgical discussions, and so on. Furthermore, the ability to link
in real time any individual patient encounter with the expo-
nentially expanding volume of medical knowledge and per-
sonal health data is both a considerable challenge and huge
opportunity21.

Continuing our knee OA example from above, we now
apply it in the clinical setting of a new patient encounter for
knee OA. Assuming that nonoperative options have failed, it
may be possible to autopopulate a note from prior referrals to
template the clinical visit and immediately provide the next
steps for total knee arthroplasty preoperative scheduling and
medical optimization. For starters, the algorithm would need
access to the EMR to analyze available imaging consistent with

radiographic knee OA as well as primary care notes doc-
umenting pain, loss of function, and attempted nonoperative
treatments. Of course, most NLP algorithms have direct
access to medical dictionaries and associated acronyms that
would be able to understand what “NSAIDs” are and include
slight typographic errors. Recognizing “therapy” as synony-
mous with “PT” or “rehab” would be beneficial in patient
records to indicate that the patient had tried NSAIDs and
physical therapy and demonstrates obvious signs of radio-
graphic OA. Certainly, the history and examination would be
documented by the physician, but the NLP may be able to
“suggest” phrases that would meet appropriate coding stan-
dards. The machine may use dozens of algorithms to break a
sentence down or expand on one.

The EMR example is overly simplistic but certainly
within reach. Most importantly, it begins to provide a
glimpse into the potential of decompressing the orthopaedic
surgeon’s documentation and regaining critical clinical
time. Imagine a world in which a practitioner could walk
into a room and engage a patient in conversation using an
NLP-assisted EMR that is structured and responsive to tasks
and commands such as “pull up all CT [computed tomog-
raphy] scans on patient’s shoulder,” “graph the trend of all

Fig. 5

Example of input, hidden, and output layers in an ANN used to predict value-based metrics prior to elective primary total hip or knee arthroplasty. APR = all

patient refined. (Reproduced, with permission, from: Ramkumar PN, Karnuta JM, Navarro SM, Haeberle HS, Iorio R, Mont MA, Patterson BM, Krebs VE.

Preoperative prediction of value metrics and a patient-specific payment model for primary total hip arthroplasty: development and validation of a deep

learning model. J Arthroplasty. 2019 Oct;34[10]:2228-34.e1.)
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CRPs [C-reactive proteins] since explant of infected TKA
[total knee arthroplasty],” or “book for left carpal tunnel
release.” The early stages of a virtual assistant such as this is
currently being studied at Vanderbilt University and the
University of Rochester22,23. NLP could assist in creating an
accurate clinic note and generating a prognosis for treat-
ment success that is based on the entirety of the patient’s
biopsychosocial profile and access to the patient’s medical
record. In this manner, we will come much closer to the
concept of precision medicine21.

The Internet of Things (IoT)
The IoT is simply the interconnection of so-called smart
devices that collect data and deliver them to the internet to
connect people to people, people to things, and things to
things24. Examples relevant to orthopaedics include computers,
intraoperative devices, smart phones, garments, sleeves, and
braces25-27. These smart devices, when applied in the health-care
environment, are termed mobile health, or mHealth28,29. AI and
mHealth together make an indispensable future in orthopaedics.
McClelland points out that AI and the IoT are analogous to the
relationship of the brain to the human body9. The body’s
peripheral end organs collect a multitude of sensory data for

interpretation by the brain just as the IoT collects data that are
sent to AI systems in order to interpret clinical scenarios (Fig. 6)30.
A current validated example of AI and the IoT includes
wearable sensors paired with a smart phone that transfer
information following TKA to a remote patient monitoring
platform26,31. These data can include patient-related outcome
measures, steps, opioid use, range of motion, home exercise
compliance, and pain visual analog score. Similarly, some of
the same authors validated the use of a smart orthotic to
remotely monitor shoulder range of motion26,32. The remote
monitoring of the orthopaedic patient opens up an exciting
and entirely new area of research and patient engagement in
the preoperative and postoperative phases of care. Further-
more, this technology allows the collection of large volumes
(approximately 18,000 data points per patient) of real-time
rehabilitation data following TKA at day 0 through week 12,
which has never before been possible31,33. Access to such data
may enable predictions of which patients will struggle with
their rehabilitation program because of intrinsic or extrinsic
factors. Similarly, it can help determine when patients can
safely progress to the next level in their rehabilitation pro-
gram or if they have maximized their rehabilitation potential
and can discontinue physical therapy.

Fig. 6

Remote patient monitoring. Data for health monitoring applications can be captured using a wide array of pervasive sensors that are worn on the body,

implanted, or captured through ambient sensors, e.g., inertial motion sensors, electrocardiogram patches, smart watches, electroencephalograms, and

prosthetics. (Republished with permission of IEEE, from: Ravi D, Wong C, Deligianni F, Berthelot M, Andreu-Perez J, Lo B, Yang GZ. Deep learning for health

informatics. IEEE J Biomed Health Inform. 2017 Jan;21[1]:4-21; permission conveyed through Copyright Clearance Center, Inc.)
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Orthopaedics and AI Research
Over the last few years, there has been a substantial increase in
the number of initiatives leveraging the power of AI to address
orthopaedic-specific problems. An excellent in-depth systematic
review of ML techniques applied to orthopaedic problems over the
last 2 decades, by Cabitza et al., was recently published12. The
authors found that spine pathology, OA detection and prediction,
and imaging of bone and cartilage were the most studied topics,
while DL and support vector machines (SVMs) were the most
frequent ML applied algorithms12. Medical imaging data were
by far the most commonly applied input data source12 (Fig. 7).
Even though an in-depth analysis of specific AI-related projects
in orthopaedics is beyond the scope of this review, we include a
table with some notable examples of such initiatives (Table I).
We recommend referring to the specific articles for full details
on the methodology and results. However, we would be remiss
if we did not direct readers to the website of the Journal of the
American Medical Association dedicated to interdisciplinary
groups demonstrating ML research for health care34.

Challenges Facing AI in Orthopaedics
By now a reasonable question would be “With all the potential
for AI to change orthopaedics, why isn’t it happening?” Some

people have gone so far as to accuse AI in medicine of being no
more than a modern day “Mechanical Turk”—the fake 18th-
century chess-playing machine1,35. This would imply that ML
provides no advantage over traditional statistics, which is
simply not true36. There is no question that AI works. Con-
trary to our initial contrast between traditional statistics and
ML to illustrate a point (Fig. 2), a clear distinction between
the 2 techniques is difficult to make and it is more appropriate
to view the 2 as lying on a spectrum16. Indeed, Christodoulou
et al., in their PRISMA (Preferred Reporting Items for Sys-
tematic Reviews and Meta-Analyses)-compliant systematic
review, concluded that ML performed no better than logistic
regression (LR) and that many studies had poor methodology,
with the LR-ML model validation being either not sound or
not well reported37. The authors offered 2 recommendations
based on their review of the studies. First, model development
and validation methods should be more carefully designed
and reported. Second, research should focus more on iden-
tifying which algorithms have optimal performance for dif-
ferent types of prediction problems37. Furthermore, the study
results reported by Miller et al. on LR versus ML models in a
cardiac transplant database “raise the notion that large clinical
datasets might lack the accuracy and granularity needed for

Fig. 7

Bubble chart showing orthopaedic studies by ML techniques and ML techniques by input data. ACL-PCL = anterior cruciate ligament-posterior

cruciate ligament, and SVM = support vector machine. (Reproduced, under Creative Commons license Attribution 4.0 International [CC BY 4.0], from:

Cabitza F, Locoro A, BanfiG.Machine learning in orthopaedics: a literature review. Front BioengBiotechnol. 2018 Jun27;6:75.�2018Cabitza, Locoro and

Banfi.)
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machine learning methodologies to uncover unique associa-
tions.”38,39 This brings us to the heart of the challenge to adopt
AI in orthopaedics. Topol and others have outlined 4 things

necessary for the successful implementation of AI in medi-
cine: big accurate data sets, powerful computers, cloud com-
puting, and open source algorithmic development1. Similar to

Fig. 8

The anatomy of an adversarial attack. Demonstration of how subtle changes against various AI systems (image recognition and text recognition) can

substantially alter clinical care and reimbursement. (Reproduced, with permission of the American Association for the Advancement of Science, from:

Finlayson SG, Bowers JD, Ito J, Zittrain JL, Beam AL, Kohane IS. Adversarial attacks on medical machine learning. Science. 2019 Mar 22;363[6433]:1287-9;

permission conveyed through Copyright Clearing Center, Inc.)
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Topol, the highly noteworthy review by Kohane in Science
should be considered required reading for any novice to AI and
precision medicine for a perspective of how these 2 may evolve
in the future21. However, an important point to remember as
highlighted by Cabitza et al. is that the application of ML in the
orthopaedic field is still limited to Phase-2, or even smaller,
studies12.

Ethical Considerations
Much of AI today involves ML in the form of training deep
neural networks, which requires large amounts of data.
This suggests that developers of AI need to have access to
sensitive medical information, which raises concerns about
patient privacy. These concerns were exemplified in 2015, when
DeepMind—an English company owned by Google—reached
an agreement with the U.K. National Health Service (NHS)
to get access to the medical information of 1.6 million
individuals. In 2017, the U.K. Information Commissioner’s
Office (ICO) found that this agreement violated the Data
Protection Act40.

In addition to privacy issues, there are serious concerns
associated with AI biasing. If the data on which the AI was
trained involve any degree of bias, this will result in widespread
systematic analytical mistakes. For example, much of the
available historic medical data in the U.S. is predominantly
based on medical records of white men41,42. An algorithm
trained on such data may make less accurate predictions about
women, ethnic minorities, or any other underrepresented
group in the data set. This is similar to the bias of human
judgment, which stems from an individual’s past experiences,
which in turn can lead to inaccurate clinical decisions. How-
ever, the widespread simultaneous deployment of the biased AI
and its use by thousands of clinicians may have more detri-
mental implications to patient care and safety. Moreover, AI
does not possess traits that are uniquely human like morality
and intuition and is liable to makemistakes that seem absurd to
humans43. Unfortunately, these vulnerabilities in AI can be
exploited by various players interested in the trillion-dollar
health-care industry for financial, political, and other motiva-
tions. Adversarial attacks are inputs to an AI model that are
intentionally crafted to bias or force the model to make a
mistake44. Finlayson et al. detailed a fantastic summary of how
these attacks could impact medical diagnosis and decision
support, medical insurance claims, drug and device approvals,
and clinical trials (Fig. 8)44. Despite the clear danger of these
attacks, the authors pose a difficult question, “Should the
adversarial-examples problem in health care systems be
addressed now—in the early, uncertain days of medical AI
algorithms—or later, when the algorithms and the protocols
governing their use have been firmed up?”44 The authors then
suggested that regulating AI now may help defend against
some of these problems but at the risk of locking us into
inaccurate threat-based models and unwieldy regulatory
structures. The unintended consequence would amount to
stifling the types of innovation AI systems require in order
to guard against these not yet fully materialized threats.

Finlayson et al. then offered some solutions such as amending
currently existing regulatory practices and mechanisms. AI-
based software is defined as a medical device and as such
falls under the purview of the U.S. Food and Drug Admin-
istration. A lifecycle-based framework for regulating AI sys-
tems in medicine is covered in further detail by Hwang
et al.45. Unfortunately, it is inconceivable that exploitation of
these AI systems in the cyberworld of medicine at any point
in the future of AI development will cease to exist. Cy-
bersecurity is a cat and mouse game, and Finlayson et al.
pointed out that it is always easier to break systems than to
protect them44.

More Challenges and Considerations
Cabitza et al. offered 3 related viewpoints on unintended
consequences of ML in medicine in addition to the ethical and
black box challenges previously discussed46. These viewpoints
include reducing the clinical skills of physicians and physician
extenders (deskilling), reliance on data without appropriate
context, and not fully appreciating the intrinsic uncertainty of
clinical medicine. First, deskilled clinical practitioners reliant
on AI systems, which, if compromised (i.e., adversarial
attacks), may lead to serious consequences in the delivery of
care. There is also the concern that as the diagnostic perfor-
mance of AI systems reaches that of humans, there may be
subtle loss of self-confidence and willingness of a physician
to provide a definitive diagnosis as there may be 2 conflicting
opinions (the practitioner’s and the AI’s). Second, AI tech-
niques help make decisions based on data that are presumed
to be both reliable and a complete representation of the clin-
ical scenario. However, ML models only identify patterns
within data and are at risk for generating incorrect conclu-
sions because critical contextual information is at times
difficult or impossible to include in the data. This is espe-
cially problematic if overreliance on AI systems erodes clinical
practitioners’ skills and ability to interpret data within ap-
propriate clinical context. Finally, the deeply embedded
intrinsic uncertainty of the medical decisions that feed AI
models may be underappreciated. Consequently, the relia-
bility and accuracy of ML performance may continue to suffer
if algorithms are not adapted to account for the quality of
medical data46.

Conclusions
The brief history and explanation of AI given above will
hopefully help practitioners to gain new insight into the topic
and a greater appreciation of how AI may be able to positively
affect orthopaedics. Augmented intelligence, rather than arti-
ficial intelligence, may be the proper way to view this exciting
and promising field. AI could provide solutions to the
increasing demands of redundant and repetitive tasks that are
lower on the intellectual spectrum and contribute to physician
burnout and medical mistakes. However, challenges regarding
the ethical deployment, regulatory challenges, and the clinical
superiority of AI over traditional statistics and decision-making
remain to be resolved.
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Appendix
Supporting material provided by the authors is posted
with the online version of this article as a data supplement

at jbjs.org (http://links.lww.com/JBJS/F720). n

Thomas G. Myers, MD, MPT1

Prem N. Ramkumar, MD, MBA2

Benjamin F. Ricciardi, MD1

Kenneth L. Urish, MD, PhD3

Jens Kipper, PhD4

Constantinos Ketonis, MD, PhD1

1Divisions of Adult Reconstruction (T.G.M. and B.F.R.) and Hand and
Upper Extremity Surgery (C.K.), Department of Orthopaedics and
Rehabilitation, University of RochesterMedical Center, Rochester, New York

2Machine Learning Arthroplasty Laboratory, Cleveland Clinic
Foundation, Cleveland, Ohio

3Department of Orthopaedics and The Bone and Joint Center, Magee
Women’s Hospital of the University of Pittsburgh Medical Center,
Pittsburgh, Pennsylvania

4Department of Philosophy, University of Rochester, Rochester,
New York

Email address for T.G. Myers: thomas_myers@urmc.rochester.edu

ORCID iD for T.G. Myers: 0000-0003-3545-2333
ORCID iD for P.N. Ramkumar: 0000-0002-1704-9156
ORCID iD for B.F. Ricciardi: 0000-0001-9384-4840
ORCID iD for K.L. Urish: 0000-0002-4511-1308
ORCID iD for J. Kipper: 0000-0002-8138-0855
ORCID iD for C. Ketonis: 0000-0003-4535-9079

References

1. Topol EJ. Deep medicine: how artificial intelligence can make healthcare human
again. 1st ed. New York: Basic Books; 2019.
2. Wikipedia. Dartmouth workshop. Accessed 2019 Aug 3. https://en.wikipedia.
org/wiki/Dartmouth_workshop
3. Hashimoto DA, Rosman G, Rus D, Meireles OR. Artificial intelligence in surgery:
promises and perils. Ann Surg. 2018 Jul;268(1):70-6. Epub 2018 Feb 2.
4. Naylor CD. On the prospects for a (deep) learning health care system. JAMA.
2018 Sep 18;320(11):1099-100. Epub 2018 Sep 5.
5. Maxmen JS. The post-physician era: medicine in the twenty-first century. New
York: Wiley; 1976.
6. Scarlat A. A machine learning primer for clinicians–part 1. HIStalk. 2018. Ac-
cessed 2019 Aug 5. https://histalk2.com/2018/10/17/a-machine-learning-
primer-for-clinicians-part-1/
7. Chollet F. Deep learning with Python. Shelter Island, New York: Manning Publi-
cations; 2018.
8. Bini SA. Artificial intelligence, machine learning, deep learning, and cognitive
computing: what do these terms mean and how will they impact health care? J
Arthroplasty. 2018 Aug;33(8):2358-61. Epub 2018 Feb 27.
9. McClelland C. The difference between artificial intelligence, machine learning,
and deep learning. Medium. 2017. Accessed 2019 Aug 3. https://medium.com/
iotforall/the-difference-between-artificial-intelligence-machine-learning-and-deep-
learning-3aa67bff5991
10. Wikipedia. Machine learning. Accessed 2019 Aug 3. https://en.wikipedia.org/
wiki/Machine_learning
11. Reznik AM, Urish KL. Understanding the impact of artificial intelligence on
orthopaedic surgery. American Academy of Orthopaedic Surgeons (AAOS Now).
2018. Accessed 2019 Apr 21. https://www.aaos.org/AAOSNow/2018/Sep/
Research/research01/?ssopc=1
12. Cabitza F, Locoro A, Banfi G. Machine learning in orthopedics: a literature
review. Front Bioeng Biotechnol. 2018 Jun 27;6:75.
13. Galbusera F, Casaroli G, Bassani T. Artificial intelligence and machine learning
in spine research. JOR Spine. 2019 Mar 5;2(1):e1044.
14. Urish KL, Reznik AM. Howwould a computer diagnose arthritis on a radiograph?:
American Academy of Orthopaedic Surgeons (AAOSNow); 2018. Accessed 2019 Apr
21. https://www.aaos.org/AAOSNow/2018/Dec/Research/research04/
15. Urish KL, Keffalas MG, Durkin JR, Miller DJ, Chu CR, Mosher TJ. T2 texture index
of cartilage can predict early symptomatic OA progression: data from the osteoar-
thritis initiative. Osteoarthritis Cartilage. 2013 Oct;21(10):1550-7. Epub 2013 Jun
15.
16. Beam AL, Kohane IS. Big data and machine learning in health care. JAMA. 2018
Apr 3;319(13):1317-8.
17. Chen JH, Alagappan M, Goldstein MK, Asch SM, Altman RB. Decaying relevance
of clinical data towards future decisions in data-driven inpatient clinical order sets.
Int J Med Inform. 2017 Jun;102:71-9. Epub 2017 Mar 18.
18. Shi L, Wang XC, Wang YS. Artificial neural network models for predicting 1-year
mortality in elderly patients with intertrochanteric fractures in China. Braz J Med Biol
Res. 2013 Nov;46(11):993-9. Epub 2013 Nov 18.
19. Ramkumar PN, Karnuta JM, Navarro SM, Haeberle HS, Iorio R, Mont MA, Patter-
son BM, Krebs VE. Preoperative prediction of value metrics and a patient-specific
paymentmodel for primary total hip arthroplasty: development and validation of a deep
learning model. J Arthroplasty. 2019 Oct;34(10):2228-2234.e1. Epub 2019 May 2.

20. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015 May 28;521(7553):
436-44.
21. Kohane IS. Health care policy. Ten things we have to do to achieve precision
medicine. Science. 2015 Jul 3;349(6243):37-8. Epub 2015 Jul 2.
22. Drees J. Vanderbilt tests virtual assistant that can voice patient EHR data to
physicians. Becker’s Health IT & CIO Report; 2019. Accessed 2020 Jan 7. https://
www.beckershospitalreview.com/ehrs/vanderbilt-tests-virtual-assistant-that-can-
voice-patient-ehr-data-to-physicians.html?oly_enc_id=9230I6729601G9D
23. Marcotte B. A prescription for physician frustration. University of Rochester.
2019. Accessed 2020 Jan 7. https://www.rochester.edu/newscenter/virtual-
physician-assistant-erecords-373972/
24. Morgan J. A Simple explanation of ‘the Internet of things’. Forbes. 2014. Ac-
cessed 2020 Jan 7. https://www.forbes.com/sites/jacobmorgan/2014/05/13/
simple-explanation-internet-things-that-anyone-can-understand/#5a4745841d09
25. Chiang CY, Chen KH, Liu KC, Hsu SJP, Chan CT. Data collection and analysis
using wearable sensors for monitoring knee range of motion after total knee
arthroplasty. Sensors (Basel). 2017 Feb 22;17(2):418.
26. FocusMotion. 2019 Accessed 2019 Apr 21. http://focusmotion.io/
27. Hexoskin Health Sensors & AI. Hexoskin smart shirts - cardiac, respiratory,
sleep & activity metrics. Accessed 2019 Apr 21. https://www.hexoskin.com/
28. Ramkumar PN, Muschler GF, Spindler KP, Harris JD, McCulloch PC, Mont MA.
Open mHealth architecture: a primer for tomorrow’s orthopedic surgeon and intro-
duction to its use in lower extremity arthroplasty. J Arthroplasty. 2017 Apr;32(4):
1058-62. Epub 2016 Nov 17.
29. Wikipedia. mHealth. Accessed 2019 Apr 21. https://en.wikipedia.org/wiki/
MHealth
30. Ravi D, Wong C, Deligianni F, Berthelot M, Andreu-Perez J, Lo B, Yang GZ. Deep
learning for health informatics. IEEE J Biomed Health Inform. 2017 Jan;21(1):4-21.
Epub 2016 Dec 29.
31. Ramkumar PN, Haeberle HS, Ramanathan D, Cantrell WA, Navarro SM, Mont
MA, Bloomfield M, Patterson BM. Remote patient monitoring using mobile health for
total knee arthroplasty: validation of a wearable and machine learning-based sur-
veillance platform. J Arthroplasty. 2019 Oct;34(10):2253-9. Epub 2019 May 16.
32. Ramkumar PN, Haeberle HS, Navarro SM, Sultan AA, Mont MA, Ricchetti ET,
Schickendantz MS, Iannotti JP. Mobile technology and telemedicine for shoulder
range of motion: validation of a motion-based machine-learning software develop-
ment kit. J Shoulder Elbow Surg. 2018 Jul;27(7):1198-204. Epub 2018 Mar 7.
33. Ramkumar PN, Haeberle HS, Bloomfield MR, Schaffer JL, Kamath AF, Patterson
BM, Krebs VE. Artificial intelligence and arthroplasty at a single institution: real-world
applications of machine learning to big data, value-based care, mobile health, and
remote patient monitoring. J Arthroplasty. 2019 Oct;34(10):2204-9. Epub 2019 Jun
17.
34. JAMA. Machine learning. 2019. Accessed 2020 Jan 7. https://sites.
jamanetwork.com/machine-learning/.
35. Wikipedia. The Turk. Accessed 2019 Aug 11. https://en.wikipedia.org/wiki/
The_Turk
36. Davison J. No, machine learning is not just glorified statistics. Medium. 2018.
Accessed 2020 Jan 7. https://towardsdatascience.com/no-machine-learning-is-
not-just-glorified-statistics-26d3952234e3
37. Christodoulou E, Ma J, Collins GS, Steyerberg EW, Verbakel JY, Van Calster B. A
systematic review shows no performance benefit of machine learning over logistic

839

THE JOURNAL OF BONE & JOINT SURGERY d J B J S .ORG

VOLUME 102-A d NUMBER 9 d MAY 6, 2020
ART IF IC IAL INTELL IGENCE AND ORTHOPAEDICS

http://jbjs.org
http://links.lww.com/JBJS/F720
mailto:thomas_myers@urmc.rochester.edu
http://orcid.org/0000-0003-3545-2333
http://orcid.org/0000-0002-1704-9156
http://orcid.org/0000-0001-9384-4840
http://orcid.org/0000-0002-4511-1308
http://orcid.org/0000-0002-8138-0855
http://orcid.org/0000-0003-4535-9079
https://en.wikipedia.org/wiki/Dartmouth_workshop
https://en.wikipedia.org/wiki/Dartmouth_workshop
https://histalk2.com/2018/10/17/a-machine-learning-primer-for-clinicians-part-1/
https://histalk2.com/2018/10/17/a-machine-learning-primer-for-clinicians-part-1/
https://medium.com/iotforall/the-difference-between-artificial-intelligence-machine-learning-and-deep-learning-3aa67bff5991
https://medium.com/iotforall/the-difference-between-artificial-intelligence-machine-learning-and-deep-learning-3aa67bff5991
https://medium.com/iotforall/the-difference-between-artificial-intelligence-machine-learning-and-deep-learning-3aa67bff5991
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Machine_learning
https://www.aaos.org/AAOSNow/2018/Sep/Research/research01/?ssopc=1
https://www.aaos.org/AAOSNow/2018/Sep/Research/research01/?ssopc=1
https://www.aaos.org/AAOSNow/2018/Sep/Research/research01/?ssopc=1
https://www.aaos.org/AAOSNow/2018/Dec/Research/research04/
https://www.beckershospitalreview.com/ehrs/vanderbilt-tests-virtual-assistant-that-can-voice-patient-ehr-data-to-physicians.html?oly_enc_id=9230I6729601G9D
https://www.beckershospitalreview.com/ehrs/vanderbilt-tests-virtual-assistant-that-can-voice-patient-ehr-data-to-physicians.html?oly_enc_id=9230I6729601G9D
https://www.beckershospitalreview.com/ehrs/vanderbilt-tests-virtual-assistant-that-can-voice-patient-ehr-data-to-physicians.html?oly_enc_id=9230I6729601G9D
https://www.beckershospitalreview.com/ehrs/vanderbilt-tests-virtual-assistant-that-can-voice-patient-ehr-data-to-physicians.html?oly_enc_id=9230I6729601G9D
https://www.rochester.edu/newscenter/virtual-physician-assistant-erecords-373972/
https://www.rochester.edu/newscenter/virtual-physician-assistant-erecords-373972/
https://www.forbes.com/sites/jacobmorgan/2014/05/13/simple-explanation-internet-things-that-anyone-can-understand/#5a4745841d09
https://www.forbes.com/sites/jacobmorgan/2014/05/13/simple-explanation-internet-things-that-anyone-can-understand/#5a4745841d09
http://focusmotion.io/
https://www.hexoskin.com/
https://en.wikipedia.org/wiki/MHealth
https://en.wikipedia.org/wiki/MHealth
https://sites.jamanetwork.com/machine-learning/
https://sites.jamanetwork.com/machine-learning/
https://en.wikipedia.org/wiki/The_Turk
https://en.wikipedia.org/wiki/The_Turk
https://towardsdatascience.com/no-machine-learning-is-not-just-glorified-statistics-26d3952234e3
https://towardsdatascience.com/no-machine-learning-is-not-just-glorified-statistics-26d3952234e3


regression for clinical prediction models. J Clin Epidemiol. 2019 Jun;110:12-22.
Epub 2019 Feb 11.
38. Miller PE, Pawar S, Vaccaro B, McCullough M, Rao P, Ghosh R, Warier P, Desai
NR, Ahmad T. Predictive abilities of machine learning techniques may be limited by
dataset characteristics: insights from the UNOS database. J Card Fail. 2019 Jun;
25(6):479-83. Epub 2019 Feb 6.
39. Akbilgic O, Davis RL. The promise of machine learning: when will it be delivered?
J Card Fail. 2019 Jun;25(6):484-5. Epub 2019 Apr 9.
40. BBC. Google DeepMind NHS app test broke UK privacy law. 2017. Accessed
2020 Jan 7. https://www.bbc.com/news/technology-40483202
41. Feldman S, Ammar W, Lo K, Trepman E, van ZuylenM, Etzioni O. Quantifying sex
bias in clinical studies at scale with automated data extraction. JAMA Netw Open.
2019 Jul 3;2(7):e196700.
42. Oh SS, Galanter J, Thakur N, Pino-Yanes M, Barcelo NE, White MJ, de Bruin DM,
Greenblatt RM, Bibbins-Domingo K, Wu AH, Borrell LN, Gunter C, Powe NR, Burchard
EG. Diversity in clinical and biomedical research: a promise yet to be fulfilled. PLoS
Med. 2015 Dec 15;12(12):e1001918.
43. Goodfellow IJ, Shlens J, Szegedy C. Explaining and harnessing adversarial
examples. Presented as a poster exhibit at the 2015 International Conference on
Learning Representations. Computational and Biological Learning Society; 2015
May 7-9. San Diego, CA. https://dblp.org/db/conf/iclr/iclr2015
44. Finlayson SG, Bowers JD, Ito J, Zittrain JL, Beam AL, Kohane IS. Adversarial
attacks on medical machine learning. Science. 2019 Mar 22;363(6433):1287-9.
45. Hwang TJ, Kesselheim AS, Vokinger KN. Lifecycle regulation of artificial intelli-
gence- and machine learning-based software devices in medicine. JAMA. 2019 Nov
22. Epub 2019 Nov 22.
46. Cabitza F, Rasoini R, Gensini GF. Unintended consequences of machine
learning in medicine. JAMA. 2017 Aug 8;318(6):517-8.
47. Thong W, Parent S, Wu J, Aubin CE, Labelle H, Kadoury S. Three-dimensional
morphology study of surgical adolescent idiopathic scoliosis patient from encoded
geometric models. Eur Spine J. 2016;25(10):3104-13.
48. Olczak J, Fahlberg N, Maki A, Razavian AS, Jilert A, Stark A, Stark A,
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